UNIVERSITY OF ANTWERP

MODEL DRIVEN ENGINEERING

ROLE PLAYING GAME FORMALISM
WITH MIC TOOL SUITE

Report II - Implementation part

Daniel Dragojevic

daniel. dragojevic@student. uantwerpen. be

Abstract

This paper describes the Model Integrated Computing (MIC) approach for
modelling Role Playing Game (RPG) formalism. Core of MIC approach is on
the formal representation, composition, analysis, and manipulation of models
during the design process. This paper will give an overview and describe the
possibilities of MIC tool suite through the implementation of RPG formalism.

Keywords: MDE, MIC, Generic modelling, GME, Model management,
UDM, Model transformation, GReAT, Role playing game, AToMPM

Preprint submitted to Model Driven Engineering 23.01.2014

Contents

1

2

INTRODUCTION

GME, UDM and GReAT

2.1 Generic Modeling Environment
2.2 Universal Data Model
2.3 Graph Rewrite And Transformation

ROLE PLAYING GAME

3.1 Stepl-GME,
32 Step2-UDMo
3.3 Step3-GReAT

COMPARISON GME AND AToMPM

4.1 AToMPM
4.2 Comparison

CONCLUSION

10
10
14
14

18
18
19

20

List of Figures

O 1O Ui W N

— = = O
N = O

MIC development cycle [2] 5
GME modelling concepts [4] 6
UDM framework with modules [5] 8
GME interface 11
Class diagram 12
Attributes 12
RPG aspect 13
RPG overview 14
GReAT configuration elements 16
GReAT transformation elements 16
Example - 2 inputs and 3 rule elements 17

RPG overview in AToMPM

1. INTRODUCTION

Model Driven Engineering (MDE) is a software development methodol-
ogy which promotes an idea of raising the level of abstraction in program
specification and improving automation in development. Automation im-
provement in development is reached by using executable model transforma-
tions. Idea is to transform higher level models into lower level models until
the model can be made executable using code generation or model interpre-
tation. The MDE principles may be implemented by different standards like
Model Driven Architecture (MDA) [1], Model Integrated Computing (MIC)
2], Microsoft Domain Specific Languages (MSDSLs) [3] and many others.

In this paper I will present MIC approach. MIC is developed at the Insti-
tute for Software Integrated Systems (ISIS) at Vanderbilt University. Core
of MIC is on the formal representation, composition, analysis, and manip-
ulation of models during the design process. Three main elements of this
approach are: the technology for the specification and use of domain specific
modelling languages (DSML), the fully integrated metaprogrammable MIC
tool suite, and an open integration framework to support formal analysis
tools, verification techniques and model transformations in the development
process.

The most popular MIC tools are the generic model editor named Generic
Modeling Environment (GME) [4], the model management tool suite named
Universal Data Model (UDM) [5], the model transformation tool suite named
Graph Rewrite And Transformation (GReAT) [6], the Design Space Explo-
ration Tool (DESERT) [7].

Figure 1 shows the MIC development cycle. Cycle starts with the formal
specification of a new application domain. We need to identify concepts,
attributes, and relationships. This is process of metamodelling. Metamodel
defines the abstract syntax, static semantics and visualization rules of the
domain. The visualization rules determine how domain models are going
to be visualized and manipulated in a visual modelling environment. With
specified domain we are able to generate a Domain Specific Design Envi-
ronment (DSDE). The DSDE can then be used to create domain specific
designs/models. However, to do something useful with these models such as
synthesize executable code, perform analysis or drive simulators, we have to
convert the models into other formats like executable code, inputs to some
analysis tool, or configuration files for simulators. This process is called
model interpretation and it includes model interpreters. Model interpreters

can convert models of a given domain into some other format, typically with
a different semantic domain. The output of the transformation can be con-
sidered as another model that conforms to a different metamodel and thus
model interpreters can be considered as tools facilitating a mapping between
domains [2].

Application
Domain

App. App. App.
1 2 3

Metamodelling Environment Application
Evolution Evolution

S R
Formal Specifications i
i

DSDE

MModel Builder

Meta-Level
Translation

Model
Interpretation

Model Interpreters I

Figure 1: MIC development cycle [2]

Aim of this paper is to present possibilities of MIC tool suite for imple-
mentation of Role Playing Game (RPG) formalism. In the next section I will
give a brief explanation of each tool required for each step of the implemen-
tation: GME, UDM and GReAT. Section 3 gives explanation of modelling
process of role playing game formalism in GME. Section 4 gives comparison
of GME and A Tool for Multi Paradigm Modeling (AToMPM) [10]. Section
5 concludes this paper.

2. GME, UDM and GReAT

In this section I present three tools for implementation of RPG formalism.
I give a brief description and concepts of tools which can be used for the each
step of building process.

2.1. Generic Modeling Environment

Generic Modeling Environment was covered in the first paper [2] but be-
cause importance of this tool I repeat some of the highlights. GME is a
metaprogrammable, domain specific, graphical editor supporting the design,
analysis and synthesis of complex software intensive systems. GME sup-
ports higher level abstractions than programming languages like C++/C or
Java, and modelling languages like Unified Modeling Language (UML). This
means that we need less effort and fewer low level details to develop a given
system. In addition, GME allows users to define new modelling languages
using metamodels to describe the rules, constraints, and concepts useful for
modelling a class of problems.

GME metamodels must be created using the MetaGME paradigm, which
is installed and registered with GME. Metamodelling level of GME pro-
vides generic modelling primitives that assist an environment designer in the
specification of new modelling environments. These concepts are directly
supported by the framework as stereotypes of the specific classes. Figure 2
shows GME modelling concepts.

Project

1
Constraint Folder

Reqgnode 0.7 []
0.7
i
0..[

Aftribute - FCO Role Part

referred o= o=
ConnRole

1.7

0.: ;
Set J Reference Atom Connection L Model [Aspect

Figure 2: GME modelling concepts [4]

A Project contains Folders. Folders are containers for easier organization
of models. Folder contains Models. Models are container elements which
can have parts and inner structures. A part in a container Model always
has a Role. The modelling paradigm determines what kind of parts are
allowed in Models acting in which Roles. Atoms are atomic elements, i.e.
they do not contain any other object. Associations are modelled using the
connection primitive that is visualized by the modelling tool as a line between
the objects. Connections are used to express relationships between objects
at the same hierarchy level or one level deeper. To overcome this limitation
we can use References to associate objects in different model hierarchies.
Connections and References model relationships between at most two objects.
To group more elements we can use Sets.

Atoms, models, connections, references and sets are called the First Class
Objects (FCO) in GME. FCOs can contain both textual Attributes and Con-
straints, which are Object Constraint Language (OCL) based expressions for
providing verifiability for the models. Another important concept in GME
is the Aspect (viewpoint). Every model has a predefined set of Aspects and
each part has option to be visible or hidden.

2.2. Universal Data Model

The Universal Data Model is a metaprogrammable tool for providing
uniform access to data structures that could be persistent. The tool uses
UML class diagram as the language for defining the data structures and it
generates C++ or Java class definitions for implementing the classes. Each
attribute and association have a corresponding setter/getter method in the
generated code. The generated class implementations are pointing to generic
objects that provide the real implementation. These generic objects can
be persistent and be mapped into: Extensible Markup Language (XML)
files, GME project files, database tables, or Common Object Request Broker
Architecture (CORBA) structures. For each kind of generic object there
is a separate back end library that implements the objects in terms of the
underlying technology.

Figure 3 shows UDM framework with the following modules:

o GME UML environment with the GME UML paradigm and inter-
preter: Used to generate equivalent XML files from GME UML models,

o UDM program: Used to read generated XML files, and generate the
metamodel dependent portion of the UDM API: a C++ source file, a

7

C++ header file, and an XML Document Type Description (DTD) or
XML Schema Definition (XSD),

e (Generic UDM: Used to include headers and libraries which can be
linked to the users program, and

o Utility programs: Used to manipulate and query UDM data.

GME
%? GME UML
- Bina
XML data fil ry
_|| i pe— Haﬁg

[
GME/UML
\

XML

(Meta) UDM

Project
files
(*.udm)

<Uml.xsd>

Figure 3: UDM framework with modules [5]

The typical process of using the UDM starts with a UML metamodel
which is created in GME. The information in the UML diagram is converted
to an XML file using the GME interpreter. The format of these XML files is
UDMs representation of UML class diagram information. In the case when
the UML diagram contains multiple packages, the diagram is converted to
a UDM Project file. We can use the UDM.exe program to generate the
paradigm dependent API files. We need to includes these files, along with
other, generic UDM headers libraries into a C++ project. Changes in the
UML diagrams are followed by the same procedure. Since most changes also
change the generated API, modifications in the programs that use it may
also be required.

2.3. Graph Rewrite And Transformation

GReAT is the model transformation language for the domain specific
modelling tool GME. Based on the type graph, GReAT supports the exoge-
nous transformation and allows the specification of cross domain transfor-
mations, where models belonging to different domains can be transformed
simultaneously.

GReAT consists of three sublanguages: the pattern specification language,
the transformation rule language and the control flow language.

Pattern Specification Language

The pattern specification language is used to specify the graph patterns
that will form the Left Hand Side (LHS) and Right Hand Side (RHS) of the
rule. LHS and RHS rules are part of the graph transformation where the
LHS specify the precondition and the RHS the postcondition. Unlike some
other approaches (e.g. AToMPM) in GReAT both the LHS and RHS are
specified together as a single pattern.

Transformation Rule Language

The transformation rule language is used to specify the transformation
rules. Each object in the graph pattern plays a specific role in the transfor-
mation. There are three types of roles:

e Bind: Used to match objects in the graph,
e Delete: After match the object is deleted, and
e New: After match the object is created.

According to the general form of a the transformation rule, the objects
marked as Bound can be considered as the LHS and the objects marked as
New or Delete are the RHS. In certain case, the pattern itself is not enough to
take decision of the matching, so we need additional nonstructural constraints
on the pattern. A C++4 code can be placed in Guard to restrict the execution
of the rule if certain conditions hold. The rule execution implies the creation
or deletion of objects and the values of objects attributes are affected by
the transformation, so the Attribute mapping specifies the update by a set
of assignment statements. The application of a rule depends on the objects
(Packets) supplied by the previous rule, the In and Out ports are used to
pass objects between rules.

Control Flow Language

The model to model transformation is the result of sequencing the ap-
plication of rules, thus the control flow language is used to specify the flow
of the application of rules and manage the complexity of the transformation
process. The language supports the following features:

e Sequencing: Rules can be connected and executed in sequence,

e Non-determinism: Rules are executed in parallel where the order of
execution is non-deterministic,

e Hierarchy: High level or compound rule can contain other compound
rules or primitive rules,

e Recursion: High-level rule can call itself, and

e Conditional execution: Test/Case construct used to choose between
different control flow paths.

3. ROLE PLAYING GAME

In the paper [8] I gave an overview of the role playing game. Based on
that I implement an idea with the tools mentioned in Section 2. I start with
GME, continue with UML and finish with GReAT.

3.1. Step 1 - GME

The first thing one must do using GME is to define a sketch of a meta-
model, which is basically a UML Class Diagram extended with some addi-
tional concepts. These additional concepts include OCL constraints and also
some GME specific features such as configurable model visualization proper-
ties. To access metamodel environment we need to use MetaGME paradigm.
This is the starting point for implementation of RPG formalism.

Creation of project

When we start GME a pop up dialog box gives an option to start a
new project or continue from the previous one. In this case we choose the
new project and the MetaGME paradigm on which the project will be based
on. Application warns us to save our project immediately. Saved file is

10

in the .mga format (RPG.mga). Till this point we have an empty project
named RPG, based on the MetaGME paradigm and containing just a root
folder. We continue by creating the paradigm sheet to the root folder which
is accessible in the browse window of GME. New paradigm sheet gives us
an empty window in the user area where we can start to define entities and
relationships (Figure 4).

» MetaGME - GameElements - /RPGameFormalism/ =

File Edit View Tools Window Help

sl B X9 4 9 @i s &l ik ad bk gi B Do/ LB XS N
GameElements i
3 Constraints | Attributes | All T Marne: GameElements ParadigmSheet Aspect: | Class Diagram Aggregate | Inheritance | Meta

% Class Diagram | isualization RPGame Fomalism v
=' — e e

| —=Atom== ~ B~ %" RPGameFormalism
» T4l GameBemerts

*
&

=<AtomProxy==
« a RPGameFormalism far Kind
Attibutes | Preferences | Properties
[
Author D. Dragojevic A

[<=Connection>> Version w01
o ™ Comment MDE v
x

*

x

o

n

; =15 -+« [0

1| Ready CAP MUK SCRL EDIT 10% MetaGME 03:11 AM

Figure 4: GME interface

The part browser window of GME shows available objects which we use
to define our model. Objects are organized in several tabs: class diagram,
visualization, constraints and attributes.

Definition of entities and relationships

The class diagram aspect tab offers necessary objects to define our RPG
formalism. Each of objects has access to the attribute panel where we can
edit attributes, preferences and properties (e.g. icons, size, colours, etc.).
Connection between objects involve: the source, the destination and the
connection itself. We need special Connector objects to define each type
of relationship between objects. Connections are created in Connect mode
which we choose from the toolbar on the left hand side in GME. Following
figure shows the RPG class diagram.

11

. N Map
Character [o.1 Tile RS + Scene 1.0
<<FCO=> <<Model== [1.1 <<Model=> [T1 <<Model>>
- 17
t
Iterm
«<FCO=> [0.1 r-——--1 !
|
]
0. 0.1 0. i 0.
DoorConnection SpecialCccupant TileConnection | | SceneConnection
<<Connection=> <<FCO=> .| ==Connection=> | L______| <<Connection==>
Hero Villain
<<Atom== =<Atom== i
i
i
-
Goal
<<Atom==
1. Doar Trap Obstacle
T| ==Atom== ==Atom=> ==Atom==
Potion Key Weapon
<<Atom>> <<ptom>> || =<Atom>>

Figure 5: Class diagram

Attributes definition

Next step is to define attributes to our paradigm to make it more realistic.
It is necessary to switch to the Attributes aspect tab in the part browser
window to access attribute objects. Each attribute needs to be defined in
the separate object. Final step is to connect game element(s) with associated
attribute. Figure 6 shows the final attribute aspect.

Map
<<Model>>

numberCiGoals - field
gamelsOver bool

—

numberOfGoals
==FieldAtiribute=>

gamelsOver

<<BooleanAtiribute=>

Scene
<<Model>>

sceneType : enum

Lt e

sceneType
<<EnumAttribute>>

SpecialOccupant ftem
Character typeCICharacter
“<Fco-> “<Fco-> <<FCO=> <<EnumAfiribute==
typeQfCharacter : enum ,J—
nameOfCharacter : field
h‘etalt::,la‘lue : :\e}g nameOfCharacter
attackValue e’ <<FieldAttribute=>>
Daoor Obstacle Goal Potion
<<Atom=> <<Atom==> <<Atom==> <<Atom=>
isOpen - bool healthValue : field
[J— ; Hero collectedGoals
isOpen Trap Weapon ue <<Atom=> - <<FieldAttribute>>
<=BooleanAtiribute>> =<Atom== =<Atom== ==FieldAttribute=> collectedGoals - field
attackValue : field attackValue : field
] Villain
—
attackValue Key <<Atom>>
<<FieldAtiribute=> <<Alom=>>
DaeorConnection TileConnection SceneConnection Tile
<<Connection>> <<C i i Model

Figure 6: Attributes

12

Aspect definition

After attributes, we need to define at least one aspect for our paradigm.
By switching to Visualization aspect tab in the part browser window, we are
able to choose a type of object named Aspect. This object creates visual-
ization tab for our paradigm. It is necessary to include all objects which we
want to make available later. Abstract classes are not going to be selected.
Following figure shows defined RPG aspect for our paradigm.

Tile Scene Map
==Model>= ==Model== ==hodel==
sceneType : enum numberOfGoals : field
gamelsOver : bool
Weapon
collectedGoals - field allackvalue - field RPG
=<Aspect==>
— Potion
Willain Door
=<Atom== <<Atom>> ==Atom==
healthValue : field -
isOpen - bool DoorConnection SceneConnection
<=Connection>> <=Connection>>
“Etoalw Obstacle
om ==Atom==
Key Trap TileConnection
==Atom== <<Afom>= ==Connection=>
attackValue : field

Figure 7: RPG aspect

Interpretation of metamodel and installation of new paradigm

This brief overview of implementation described necessary steps for cre-
ation of new paradigm. Before we can create models using our new paradigm
we need to interpret the metamodel. To create RPG paradigm we need to
use Metalnterpreter. Interpreter generates XMP file containing the paradigm
specifications and we are able to register our paradigm, RPGameFormalism.

Creation of domain specific model

To create domain specific models we start new project and in the paradigm
dialog box this time we need to select our newly created paradigm. We need
to add a new Map in the root folder which enables full view of RPG aspect of
game elements in the part browser of GME. We continue with adding Scenes
and Tiles in Scenes to build our game map. Moreover, we can add other
game element into tiles. Figure 8 shows RPG overview.

13

Levell Level3

v

Door Goal Hero Obstacle Paotion Trap Villain Weapon

HEMYNEDE

Figure 8: RPG overview

3.2. Step 2 - UDM

Once we have a GME metamodel, we also have to create a meta for the
UDM environment. This process is not automated, so UDM meta must be
created manually. Reason for this is another tool, GReAT, which we need
to use afterwards. GReAT is built on top of UDM, and UDM works with
metamodels in the UML paradigm. That is why we need to convert our GME
metamodel into UDM style metamodel. The UML class diagram can be
generated from the GME meta using the GME2UML interpreter. The next
step is to interpret the UML class diagram with UML2XML interpreter that
comes with UDM. This interpretation process creates a Document Object
Model (DOM) backend of the metamodel.

3.3. Step 8 - GReAT

From this point is possible to say that building a role playing formal-
ism with the MIC tool suite is not effortless process. MetaGME part of
implementation goes more or less fluent. Good overview and simple class
connection gives an easy and powerful control. Mappings from models to a

14

semantic domain are performed by model interpreters. Problem comes with
this step. Need for different interpreters brings time consuming process with
deep knowledge of MIC insights. We can conclude that there is a need for
higher level methods and tools for building model interpreters. These generic
tools should automatically generate domain specific model interpreters from
models. This gap of GME makes implementation of RPG formalisms re-
ally hard. Moreover, need to work with several tools on one project makes
building process slow and confusing. Till this point I was able to follow
all instructions of the implementation but next steps were problematic. All
tutorials, papers and knowledge about this tools did not provide any clear
answer why my UDM transformation did not provide the correct files for
the next step - transformation with GReAT tool. My assumptions are that:
tools that I used are not well configured during the last updates, possible
changes in the implementation steps, incompatibility with my operating sys-
tem (Windows 8.1) or version of Visual Studio (2013), or maybe my mistake
in the configuration and conjunction of this tools. Even that I am not able to
continue with the implementation I will give a possible solution for GReAT
part.

As I stated above, next step in implementation needs to continue with
GReAT tool. I created a new UMLModelTransformer project in GME. Here
we need to use the UMLModelTransformer paradigm. File is named RPG-
Transformation.mga and it is available in project source files. Further step
is to attach the GME metamodel to our UMLModelTransformer project. In
this moment we need to go back to our MetaGME environment and con-
vert our metamodel with GME2UML interpreter. We need to save over
UMLModelTransformer project we created earlier. This allows us to attach
the UML style metamodel to the UML Model Transformer project. When
we are still in MetaGme environment we need to run MetaGME interpreter
to save any new change in our metamodel and ensure that that our GReAT
transformation wil succeed later.

Now we need to go to our transformation project file, RPGTransforma-
tion.mga, and continue with implementation. However, this is my last point
of implementation. In the moment when when we converted our metamodel
with GME2UML interpreter, program does not attach the our metamodel
to the UML Model Transformer project. Without this connection I am not
able to continue. With next steps I needed to build Configuration model
with necessary elements. Figure 9 shows configuration elements which are
available in the Part Browser of GME/GReAT environment.

15

5 51] M

File w

FileType Metalnformation

Figure 9: GReAT configuration elements

e File: This element gives the name and path to the input model(s).
This file needs to be connected to a FileType object,

o [ileType: This element gives the metamodel of the input file attached,
along with various other information, and

o Metalnformation: This element lists the UDM project file used by the
transformation along with the GR file which contains the rewriting
rules in an internal format used by GReAT.

Moreover, I needed to specify the transformations. This transformations
are are modelled with elements from the Figure 10:

F » i %

Rule Block Test

r e r

ExpressionRef ForBlock

Figure 10: GReAT transformation elements

e Rule: The basic rewriting element. Each rule contains a graph pattern
composed from UML classes.

o FxpressionRef: This element is reference to rules that have already
been defined. This elements are useful if we want to express recursion
in our transformation.

16

e Block and ForBlock: These elements allow grouping of rules together.
The difference between this two elements is in the order incoming pack-
ets are passed to the rules which are contained inside. A ForBlock
pushes the first incoming packet through all of its contained rules, then
pushes the second packet all the way through, etc. A Block pushes
all the packets to the first contained rule. The first rule generates a
number of packets, which are passed along together to the subsequent
rules, etc.

e /n and Out: These elements are ports that allow passing objects from
one rule to another.

o Test: This element is similar to an If/Else construct in textual pro-
gramming languages.

Following figure shows an example how rules would need to be organized.
Example has two inputs and three Rule elements connected. In the each of
Rule element we can define some rules to transform inputs. Output of each
Rule element is input of another one.

u_

In

FirstRule SecondRule ThirdRule

Figure 11: Example - 2 inputs and 3 rule elements

Here I finalize my overview of the implementation. From my research I
can conclude that transformation with this tool is complex and highly time
consuming. In this overview I gave just brief description of GReAT. For more
information I recommend reading paper [6].

17

4. COMPARISON GME AND AToMPM

This section brings comparison of two powerful tools for metamodelling:
GME and AToMPM. Through this paper and previous report we were able to
get more familiar with generic modelling environment. This gives us opportu-
nity to see which tool would be a better choice with building RPG formalism
and some other similar projects. Next subsection gives brief description of
AToMPM. Section 5.2 compares GME with AToMPM.

4.1. AToMPM

AToMPM is a open source research framework for designing DSML en-
vironments, performing model transformations, and manipulating and man-
aging models. AToMPM runs completely over the web what makes it inde-
pendent from any operating system, platform, or device. It provides modern
graphical user interface for dening the metamodels, describing rules graph-
ically, controlling structures for model transformations, and executing step
by step transformations for given model.

AToMPM supports real time distributed collaboration. There are two
modes: screenshare and modelshare. Developers have option to share the
same concrete and abstract syntax. This option ensures fast and easy devel-
oping process and representation between more people.

Defining a new formalisms in AToMPM goes fluent. There are three
general steps which we need to follow:

e Model definition and compilation of the formalism’s abstract syntax,
e Model compilation of the formalism’s concrete syntax,

e Model the formalism’s operational semantics (meaning).

As I state above in the text, AToMPM’s transformations and transfor-
mation rules are organized different from the GReAT approach. Transfor-
mations and transformation rules in AToMPM are instance models of the
Transformation and TransformationRule formalism respectively. Transfor-
mations in AToMPM are used to specify how rules and/or transformations
should be sequenced together. They are collections of connected transfor-
mation steps. Transformation rules consist of one RHS pattern, one LHS
pattern and zero or more Negative Application Condition (NAC) patterns.

18

Following figure gives overview of AToMPM environment for role playing
formalism.

)

Figure 12: RPG overview in AToMPM

4.2. Comparison

In the previous subsection we were able to see a brief overview of AToMPM
framework. This subsection will bring some more details about this tool and
compare it with GME. Features, flexibility, interface and implementations
vary from one tool to the other. Though I do not intend to provide an ex-
haustive, feature based comparison and review of this tools, my aim is to see
which tool would be a better choice to build RPG and similar formalisms.

Installation and accessibility

Both tools require some kind of the installation of one or more applications
on the user’s computer. Disadvantage of GME is that this tool restricts
the user to the Microsoft Windows operating system and Microsoft Visual
Studion environment. AToMPM is developed to run in popular Web browsers
(e.g. Google Chrome) and store user data in the cloud. This means that no
installation of AToMPM application is required on the user’s machine. This
makes AToMPM extremely accessible for anyone from expert developer to
curious novice.

Design and properties

GME, AToMPM and other modelling language have different approach to
specify and design concrete syntax during the metamodelling phase. GME

19

in contrast to AToMPM has already defined generic types to provide a de-
fault concrete syntax. Modification of this property can easily be overridden
at the metamodelling level. One of the interesting properties of GME is spec-
ification of different aspects (viewpoints). This property permits filtering of
the visualization space for an intuitive subset of the design, as partitioned
at design time. This makes overview, implementation and understanding of
diagrams easier.

Implementation

As I stated in the subsection 3.3, implementation of the role playing game
formalism in GME is really complex and time consuming. Implementation
with AToMPM is going much faster and easier. AToMPM gives a full solution
for all steps in the building process. However, AToMPM is still not 100 %
reliable tool. It is new tool which has some issues. Development team needs
to work hard on improvements of this tool to make it fully complete. Despite
that, even in this stage, AToMPM is more powerful tool and winner for this
task.

5. CONCLUSION

This paper presents possibilities of modelling role playing formalism with
tools based on the Model Integrated Computing approach. The Generic
Modeling Environment is a configurable toolset for creating domain specific
modelling and program synthesis environments through a metamodel that
specifies the modelling paradigm of the application domain. The metamodel
contains descriptions of the entities, attributes, and relationships that are
available in the modelling environment, and defines the family of models
that can be created using the resulting modelling environment. GME gives
powerful options to organize abstract syntax of RPG formalism. Provided
interpreters and generic types in GME environment ensures easy design of
concrete syntax. Additional properties in this tool provide more visual ap-
pealing solutions. Building process with GME goes fluent. However, GME
alone can not provide transformations. As a result, there is a need to use
other tools: Universal Data Model and Graph Rewrite And Transformation
tool. Reason to use UDM is GReAT which is built on top of UDM. That is
why there is a need to convert GME metamodel into UDM style metamodel.
Implementation fails after interpretation from UDM to GReAT. There are

20

several assumptions: tools are not well configured or not simultaneous up-
dated, incompatibility with operating system or version of Visual Studio, or
maybe even own mistake in implementation steps. Based on everything, it
is easy to conclude that building RPG formalism with this tools is complex
and highly time consuming process. Need to work with several tools on one
project and need to convert from one format to another is something what
ensures mistakes and issues. Moreover, this paper compares above tools with
another graphical modelling tool - AToOMPM. AToMPM is new, modern, web
based, open source research framework for designing DSML environments,
performing model transformations, and manipulating and managing models.
Building a formalism to model RPG in AToMPM is going much faster and
easier. Flexibility and numerous properties ensures understandable building
process even for person with minimum programming knowledge. This makes
AToMPM better choice for this kind of projects.

21

REFERENCES

1]

2]

[10]

J. D. Poole. Model-Driven Architecture: Vision, Standards And Emerg-
ing Technologies. ECOOP 2001, Budapest, Hungary, 2001.

J. Sztipanovits and G. Karsai. Model-Integrated Computing. IEEE
Computer, 1997.

Microsoft ~ Corporation. Microsoft — Domain-Specific ~ Language
(DSL) Tools. ~Web source: http://msdn.microsoft.com/en-
us/library /bb126259.aspx

A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thoma-
son, G. Nordstrom, J. Sprinkle and P. Volgyesi. The Generic Modeling
Environment. Workshop on Intelligent Signal Processing, Budapest,
Hungary, 2001.

E. Magyari, A. Bakay, T. Levendovszky, T. Paka. The UDM framework.
ISIS, 2004.

A. Agrawal, G. Karsai and F. Shi. Graph Transformations on Domain-
Specific Models. Workshop on Domain-Specific Modeling, OOPSLA,
2003.

S. Neema. Design Space Representation and Management for Model-
Based Embedded System Synthesis. 2001.

D. Dragojevic Modelling language engineering with Generic Modeling
Environment. Report I - Reading part, 2013.

G. Nordstrom, J. Sztipanovits, G. Karsai and A. Ledeczi. Metamodel-
ing - Rapid Design and Fvolution of Domain-Specific Modeling Environ-
ments. In the Proceedings of the IEEE ECBS’99 Conference, Tennessee,
1999.

E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo and
H. Ergin. AToMPM: A Web-based Modeling Environment. MODELS’13
Demonstrations, CEUR, Miami FL, USA, 2013.

22

ABBREVIATIONS

AToMPM
CORBA
DESERT
DOM
DSDE
DSML
DTD
FCO
GME
GReAT
ISIS
LHS
NAC
MDA
MDE
MIC
MSDSL
OCL
RHS
RPG
UDM
UML
XML
XSD

A Tool for Multi Paradigm Modeling
Common Object Request Broker Architecture
Design Space Exploration Tool
Document Object Model

Domain Specific Design Environment
Domain Specific Modelling Languages
Document Type Definition

First Class Object

Generic Modeling Environment
Graph Rewrite And Transformation
Institute for Software Integrated Systems
Left Hand Side

Negative Application Condition
Model Driven Architecture

Model Driven Engineering

Model Integrated Computing
Microsoft Domain Specific Language
Object Constraint Language

Right Hand Side

Role Playing Game

Universal Data Model

Unified Modeling Language
Extensible Markup Language

XML Schema Definition

23

