
Dylan Kiss

University of Antwerp
dylan.kiss@student.uantwerpen.be

 About VMTS

 The RPG formalism

 Abstract syntax

 Operational semantics

 VMTS vs. AToMPM

 Conclusion

 About VMTS

 The RPG formalism

 Abstract syntax

 Operational semantics

 VMTS vs. AToMPM

 Conclusion

 Graph-based metamodeling and model
processing framework

 N-layer

 Budapest University of Technology and
Economics

 Allows you to define, customize and utilize
◦ Languages

◦ Transformations

T. Levendovszky, L. Lengyel, G. Mezei, H. Charaf, A Systematic Approach to
Metamodeling Environments and Model Transformation Systems in VMTS,
Electronic Notes in Theoretical Computer Science 127 (1) (2005) 65-75

 About VMTS

 The RPG formalism

 Abstract syntax

 Operational semantics

 VMTS vs. AToMPM

 Conclusion

 One or more scenes

 Each scene consists of connected tiles
◦ EmptyTile, Obstacle, Trap or Door

 Two types of characters
◦ Hero (exactly one) and Villain

 Three types of items
◦ Goal (at least one), Weapon and Key

 Non-obstacle tile can contain one character
and item

 About VMTS

 The RPG formalism

 Abstract syntax

 Operational semantics

 VMTS vs. AToMPM

 Conclusion

package Constraints

 context TileMeta

 inv rightNBConsistent:

 (not self.RightTileEnd.oclIsUndefined())

 implies (self.RightTileEnd.LeftTileEnd = self)

endpackage

package Constraints

 context ObstacleMeta

 inv nothingOnObstacle:

 self.Character.oclIsUndefined()

endpackage

package Constraints

 context RPGMeta

 inv onlyOneHero:

 self.HeroMeta->size() = 1

endpackage

package Constraints

 context RPGMeta

 inv goalExists:

 self.GoalMeta->size() > 0

endpackage

 About VMTS

 The RPG formalism

 Abstract syntax

 Operational semantics

 VMTS vs. AToMPM

 Conclusion

 Based on graph rewriting

 Two steps
◦ Creating rewrite rules

◦ Creating a transformation control flow

 New model of type MTRMETA
◦ First: metamodel(s)

 Compiling rule constraints and actions failed

 Restrictions:
◦ There are no villains in the game
◦ There are only two types of tiles in the game:

EmptyTile and Obstacle
◦ There is only one type of item in the game: Goal

 6 rewrite rules:
◦ MoveHeroLeft/Right/Top/Bottom
◦ PickUpGoal
◦ GoalsNotCollected

MoveHeroRight

PickUpGoal

GoalsNotCollected

 New model of type TCFMETA
◦ First: metamodel(s)

 No support for randomness
◦ Deterministic order of rules

◦ Unable to properly simulate an RPG

 About VMTS

 The RPG formalism

 Abstract syntax

 Operational semantics

 VMTS vs. AToMPM

 Conclusion

 Abstract syntax
◦ Very similar in both tools

◦ Simplified class diagram

◦ Constraints

◦ VMTS: n-layer

 Concrete visual syntax
◦ Major difference

◦ AToMPM: built-in visual syntax creation

◦ VMTS: create your own plugin for visualization
using WPF (Windows Presentation Foundation)

 Operational and denotational semantics
◦ Both use graph rewriting

◦ Visual representation differs

◦ AToMPM: clearly divided LHS, RHS, NAC

◦ VMTS: one graph, no NAC

 Modeling environment

◦ AToMPM: cross-platform, web-based

◦ VMTS: written in C# using .NET framework, only
Windows platform

 About VMTS

 The RPG formalism

 Abstract syntax

 Operational semantics

 VMTS vs. AToMPM

 Conclusion

 Intentional plan

◦ Abstract syntax

◦ Concrete visual syntax

◦ Operational semantics

◦ Denotational semantics

 Intentional plan

◦ Abstract syntax

◦ Concrete visual syntax

 requires developing plugin with WPF

◦ Operational semantics

 partly possible: constraints/actions/NAC/randomness

◦ Denotational semantics

 Impossible: constraints/NAC

 VMTS
◦ + n-layer

◦ + default visual syntax

 AToMPM
◦ + web-based tool

◦ + built-in visual syntax editor

◦ + randomness and NAC

 My experience: AToMPM more user-friendly

