
Role-Playing Game Modeling in VMTS

Dylan Kiss

University of Antwerp, Department of Mathematics and Computer Science,
Middelheimlaan 1, 2020 Antwerp, Belgium

Abstract

VMTS [1] is a graph-based, domain-specific (meta)modeling and model pro-
cessing framework. The system provides a graphical interface for defining,
customizing and utilizing languages. This report explores the capabilities of
VMTS by means of modeling a role-playing game. This consists in creating
an abstract syntax for the RPG formalism and defining operational seman-
tics in order to simulate a model. This will be compared to the capabilities
of AToMPM to state the advantages and disadvantages of VMTS.

Keywords: VMTS, metamodeling, metamodel-based transformations,
role-playing game

1. Introduction

By means of a running example, a role-playing game, I will explore the
modeling and transformation capabilities of VMTS and compare them to my
experiences in AToMPM.

Section 2 shortly explains what VMTS is. Section 3 elaborates the RPG
formalism used throughout this report. Section 4 explains how the abstract
syntax (metamodel) and constraints for the RPG formalism are created.
Section 5 explains how operational semantics can be defined for our RPG
formalism. Section 6 compares the capabilities and user-friendliness of VMTS
with AToMPM. At last, section 7 concludes my experiences with VMTS.

2. VMTS

The Visual Modeling and Transformation System (VMTS) is a graph-
based, domain-specific (meta)modeling and model processing framework de-
veloped at the Budapest University of Technology and Economics. The sys-
tem provides a graphical interface for defining, customizing, and utilizing

Email address: dylan.kiss@student.uantwerpen.be (Dylan Kiss)

languages [2]. Besides that, VMTS provides the capability of defining and
using transformations for your metamodel. This can serve for model opti-
mizations, simulations and even translation to another formalism.

3. RPG formalism

3.1. Syntax and static semantics

1. An RPG consists of a number of scenes that have a name.

2. In each scene, there are a number of connected tiles. Tiles can be
connected to each other from the left, right, top or bottom. This way,
a map is created for the scene.

3. If a tile has a left neighbor, that neighbor should have the tile as its
right neighbor. If a tile has a top neighbor, that neighbor should have
the tile as its bottom neighbor.

4. In the game there are two types of characters: a hero and a villain.
There can only be one hero, but there can be zero or more villains. A
character is always exactly on one tile.

5. A tile can be an empty tile, an obstacle on which no character can
stand, a trap or a door. A door is a portal to a door on another scene.

6. On an empty tile there can be an item.

7. There are three types of items: a goal, a key and a weapon. A weapon
has a stricly positive damage value.

8. The hero and a villain have a health value that depicts how much
damage they can take. The health always has a strictly positive value.

9. The hero, a villain, and a trap have a damage value that depicts how
much damage they inflict. Damage is always strictly positive.

3.2. Dynamic semantics

1. A character can move from one adjacent tile to another (provided it is
not an obstacle or it is not occupied).

2. An item can be picked up by the hero by walking on its tile. Every
item can only be picked up once.

3. A hero can pick up a goal. The hero wins if he can pick up all goals.
There must be at least one goal in the game.

4. The hero can pass through a door to enter another scene. If the hero
goes back through the door, he goes back to the original door at the
original scene.

5. The hero can attack villains and vice versa, if they stand on adjacent
tiles.

6. Villains do not attack each other.

2

7. A trap hurts the hero, but not a villain.

8. A door can be locked, and the hero must pick up a particular key (for
that door) to be able to enter that door.

9. A hero can pick up a weapon that can give the hero additional damage,
according to the damage of the weapon.

10. The hero and a villain inflict damage (according to their damage value)
if they choose to attack (when on a tile adjacent to their adversary’s
tile). A trap inflicts damage (according to their damage value) on the
hero if the hero steps onto it.

11. The game is simulated in time slices: first, the hero gets one chance to
move or attack. Then, all the villains in the same scene, each get their
chance to move or attack. The order in which the villains get their
chance is not determined.

12. Villains in a different scene from the “active” scene (i.e., the scene in
which the hero currently resides) do not do anything.

13. When the hero achieves the goals, or dies, the game is over.

4. Abstract syntax

4.1. Metamodeling formalism

The first step is creating the metamodel, or abstract syntax, of the RPG
language. VMTS provides a simplified class diagram formalism for this (Fig-
ure 1). A class is here called an atom. If you create an atom, you have to
specify its name in the metamodel as well as its instance name, the type
name of the atom when it is instantiated in a model. Additionally you can
create attributes for an atom, which can be of the simple types bool, int,
float, string or Reference, or of a user defined complex type. VMTS provides
three types of connections between atoms: a relationship, containment or in-
heritance. For a connection you have to assign multiplicities and role names
to both its ends. These role names are important when you want to write
constraints for your metamodel.

4.2. The RPG metamodel

I will explain the metamodel for the RPG formalism (Figure 2). The first
atom is SceneMeta. This atom represents a scene in the game and has an at-
tribute name. It has a containment relationship (containsTile) with the atom
TileMeta, that represents a tile in a scene. TileMeta has four relationships
with itself: leftNeighbor, rightNeighbor, topNeighbor and bottomNeighbor. It
also has a containment relationship (containsCharacter) with the atom Char-
acterMeta, which represents a character on a tile. CharacterMeta has three

3

Figure 1: Creating the RPG metamodel in VMTS

attributes: name, health and damage, which represent these properties of
a character. CharacterMeta also has two subtypes: HeroMeta and Villain-
Meta, which represent a hero and a villain, respectively. TileMeta has four
subtypes: EmptyTileMeta, ObstacleMeta, DoorMeta and TrapMeta. The lat-
ter has an attribute damage, which represents the damage inflicted when a
character steps on a trap. DoorMeta has a relationship toDoor with itself.
This represents where a door leads to on another scene. EmptyTileMeta has
a containment relationship (containsItem) with ItemMeta, which represents
an item on a regular tile. ItemMeta has three subtypes: GoalMeta, KeyMeta
and WeaponMeta. The latter has an attribute damage, which represents the
increase in damage a hero gets when he picks up the weapon. KeyMeta has a
relationship (unlocksDoor) with DoorMeta, which represents that a key can
unlock a specific door.

4

Figure 2: RPG metamodel

4.3. Constraints

In VMTS it is possible to define constraints either in OCL (Object Con-
straint Language) or in C#. When defining a constraint, you first have to
choose a context for your constraint. This can be any atom or relationship in
your metamodel or even the metamodel itself. The context you choose will
be the self object in your constraint.

I added seven constraints to my metamodel (Figure 3). The first four
constraints, (right/left/top/bottom)NBConsistent, check that, when a tile has
a connection to another tile, i.o.w. is a neighbor of that tile, that other tile
has the right connection back to the original tile. The rightNBConsistent
constraint (Listing 1) e.g. checks whether, if a tile has a right neighbor, that
neighbor has the original tile as its left neighbor.

The fifth constraint, nothingOnObstacle (Listing 2), makes sure that no
character can stand on an obstacle. It uses the role name Character of
the relationship containsCharacter and the function oclIsUndefined to check
whether there is no character on an obstacle.

5

Figure 3: RPG metamodel constraints

package Const ra int s
context TileMeta

inv r ightNBConsistent :
(not s e l f . RightTileEnd . oc l I sUnde f ined ())
implies (s e l f . RightTileEnd . LeftTi leEnd = s e l f)

endpackage

Listing 1: Constraint rightNBConsistent

package Const ra int s
context ObstacleMeta

inv nothingOnObstacle :
s e l f . Character . o c l I sUnde f ined ()

endpackage

Listing 2: Constraint nothingOnObstacle

The sixth constraint, onlyOneHero (Listing 3), specifies that there should
be exactly one hero in the game. The context used here is RPGMeta,

package Const ra int s
context RPGMeta

inv onlyOneHero :
s e l f . HeroMeta−>s i z e () = 1

endpackage

Listing 3: Constraint onlyOneHero

the metamodel itself. Since VMTS does not support the OCL function
allInstances(), the workaround is to use the atom name as role name in

6

the metamodel context.
The seventh constraint, goalExists (Listing 4), checks whether there is at

least one goal in the game. It is specified in the same way as the previous

package Const ra int s
context RPGMeta

inv goa lEx i s t s :
s e l f . GoalMeta−>s i z e () > 0

endpackage

Listing 4: Constraint goalExists

constraint.
With the constraints added, the abstract syntax of the RPG formalism

is now complete. Figure 4 shows an example model that conforms the RPG
metamodel created. It contains one scene with nine tiles (seven empty tiles,
one obstacle and one trap), a hero, a villain and a goal. As such it also meets
our constraints.

Figure 4: RPG model example

7

5. Operational semantics

VMTS makes use of graph rewriting to implement transformations. The
first step is creating the rewriting rules for the RPG formalism. For each rule,
we create a new model in VMTS of the type MTRMETA (Model Transfor-
mation Rule). The first thing to do in a new rule is specify the metamodel(s)
that you want to use (Figure 5). You can specify multiple metamodels, which

Figure 5: Specifying the metamodel(s) to use in a rewriting rule in VMTS

is useful if you want to implement denotational semantics and translate one
formalism into another. The next step in constructing a rewriting rule is
specifying the nodes and relations to be matched. For each node or relation
you place on the diagram, you can choose which element(s) in your meta-
model it should conform to, and whether it should be created, modified or
deleted if necessary (Figure 6). All these options are visually represented:

Figure 6: Node settings in a rewriting rule in VMTS

deleted elements are red, modified elements are grey, created elements are
blue . . . Figure 7 shows an example rewriting rule that moves a hero to a

8

Figure 7: Example rewriting rule in VMTS

neighbor tile on the right. The yellow arrow represents replacing a relation,
in this case containsCharacter.

It is also possible to specify constraints and/or actions for every element
in a transformation rule. Constraints and actions are written in C#. When
creating rules for the RPG formalism, I was unable to get rules with con-
straints or actions compiled. As such, I have limited the rules with the
following assumptions:

1. There are no villains in the game

2. There are only two types of tiles in the game: EmptyTile and Obstacle

3. There is only one type of item in the game: Goal

With these assumptions on an RPG model, I created six rewriting rules
for the operational semantics (Figure 8):

1. Rule MoveHeroLeft
Move the hero from an empty tile to its left neighbor, if that is an empty
tile too.

2. Rule MoveHeroRight
Move the hero from an empty tile to its right neighbor, if that is an
empty tile too.

3. Rule MoveHeroTop
Move the hero from an empty tile to its top neighbor, if that is an empty
tile too.

4. Rule MoveHeroBottom
Move the hero from an empty tile to its bottom neighbor, if that is an
empty tile too.

5. Rule PickUpGoal
If there is a goal on the empty tile the hero stands on, remove that goal.

6. Rule GoalsNotCollected
Check whether there are still one or more goals in the game.

The last step is to create a Transformation Control Flow that specifies in
which order the rules are executed. We again create a new model, but this

9

(1)

(2)

(3)

(4)

(5)

(6)

Figure 8: Rewriting rules for the RPG formalism in VMTS

time of the type TCFMETA (Transformation Control Flow). Like with the
rewriting rules, we also have to specify the metamodel(s) we are using first.
After that, we can add a start node, an end node, rule containers and flow
edges. These four elements will determine the order in which the rules are
executed.

Since VMTS does not support elements that make a random choice be-
tween rules, we have to specify a deterministic order in which the rules will

10

be executed. Figure 9 shows the TCF diagram for the RPG formalism. The

Figure 9: Transformation Control Flow diagram for the RPG formalism

first rule that gets executed is GoalsNotCollected, which checks whether there
are still goals. If that rule fails (dashed gray line), we stop the transforma-
tion. If that rule succeeds (full gray line), we go to the “move” rules. These
rules are tried in the order: left, right, top, bottom. If a rule fails, it tries
the next rule. If even the last rule MoveHeroBottom fails, the transforma-
tion stops, because the hero is stuck. If one of the “move” rules succeeds,
the PickUpGoal rule gets executed, which removes a goal from its tile if the
hero is on that tile. After that rule we go straight back to the first rule,
GoalsNotCollected, and start all over again.

As you might notice, in most cases this transformation control flow will
not be able to collect the goals. Very soon it will just move the hero back
and forth, since it always tries the rules in the same order. This restriction
makes that we can not model a random behavior of the RPG.

6. Comparison with AToMPM

To conclude this report, I will compare the capabilities and user-friendliness
of VMTS and AToMPM in order to state the advantages and disadvantages
of both tools.

6.1. Abstract and concrete syntax

Creating an abstract syntax or metamodel in VMTS is very similar to the
way it is done in AToMPM. They both use a simplified class diagram. The

11

major difference and advantage that VMTS has, is that it supports n-layer
metamodeling. When creating elements in VMTS, you have to define a name
as wel as an instance name.

Creating a concrete visual syntax is different in VMTS than in AToMPM.
AToMPM has a visual syntax plugin built in, which enables you to easily
create a visual syntax for your formalism. VMTS does not have such a plugin
built in. There is no information available about this, although they put it
as one of their features. After mailing with a developer at the VMTS team, I
found out that you should use WPF (Windows Presentation Foundation) to
create a specific plugin that implements a visualization. AToMPM is clearly
more user-friendly for this purpose.

6.2. Operational and denotational semantics

Both VMTS and AToMPM allow you to create operational and denota-
tional semantics. They also both use graph rewriting for this, although their
visual representation differs. In AToMPM you have a clearly divided left-
hand side (LHS), right-hand side (RHS) and negative application condition
(NAC) for every rewriting rule. VMTS puts everything in one graph, which
makes it easier to see what gets created, modified or deleted, but it does not
support negative application conditions.

6.3. Modeling environment

Although VMTS has a professional looking interface, it did not live up to
my expectations. When writing constraints or actions in rules and executing
them, the tool always crashed. Another disadvantage is that the tool is only
available for the Windows platform, because it is written in C# using the
.NET framework. AToMPM is a web-based tool and as such usable on all
platforms.

7. Conclusion

For this project, I created a role-playing game formalism in VMTS. My
intentional plan was to create an abstract and concrete visual syntax, as
well as operational en denotational semantics for the RPG formalism. In the
end I have only been able to create an abstract syntax and define restricted
operational semantics. Creating a concrete visual syntax is not supported
out-of-the box in VMTS and requires developing a plugin with WPF. When
defining semantics, I was unable to get constraints and actions to work. As
such, I could only create basic rewriting rules that didn’t require constraints
or actions. Also, because of this, there was no way to create denotational
semantics.

12

In the end I have compared VMTS to AToMPM. From my experience, I
find AToMPM more user-friendly than VMTS. Although VMTS has the ad-
vantage of being an n-layer metamodeling tool. VMTS has been completely
rewritten last summer, according to the developers, but it still needs finishing
up. Probably most bugs will be gone in the next version.

References

[1] T. Levendovszky, L. Lengyel, G. Mezei, H. Charaf, A Systematic Ap-
proach to Metamodeling Environments and Model Transformation Sys-
tems in VMTS, Electronic Notes in Theoretical Computer Science 127 (1)
(2005) 65–75.

[2] Budapest University of Technology and Economics, Visual Modeling and
Transformation System.
URL https://www.aut.bme.hu/Pages/Research/VMTS/Introduction

[3] Budapest University of Technology and Economics, VMTS Modeling Tu-
torial.
URL https://www.aut.bme.hu/Upload/Pages/Research/VMTS/VMTS_

Modeling_Tutorial.pdf

[4] Budapest University of Technology and Economics, VMTS Model Trans-
formation Tutorial.
URL https://www.aut.bme.hu/Upload/Pages/Research/VMTS/VMTS_

ModelTransformation_Tutorial.pdf

13

https://www.aut.bme.hu/Pages/Research/VMTS/Introduction
https://www.aut.bme.hu/Pages/Research/VMTS/Introduction
https://www.aut.bme.hu/Pages/Research/VMTS/Introduction
https://www.aut.bme.hu/Upload/Pages/Research/VMTS/VMTS_Modeling_Tutorial.pdf
https://www.aut.bme.hu/Upload/Pages/Research/VMTS/VMTS_Modeling_Tutorial.pdf
https://www.aut.bme.hu/Upload/Pages/Research/VMTS/VMTS_Modeling_Tutorial.pdf
https://www.aut.bme.hu/Upload/Pages/Research/VMTS/VMTS_Modeling_Tutorial.pdf
https://www.aut.bme.hu/Upload/Pages/Research/VMTS/VMTS_ModelTransformation_Tutorial.pdf
https://www.aut.bme.hu/Upload/Pages/Research/VMTS/VMTS_ModelTransformation_Tutorial.pdf
https://www.aut.bme.hu/Upload/Pages/Research/VMTS/VMTS_ModelTransformation_Tutorial.pdf
https://www.aut.bme.hu/Upload/Pages/Research/VMTS/VMTS_ModelTransformation_Tutorial.pdf

	Introduction
	VMTS
	RPG formalism
	Syntax and static semantics
	Dynamic semantics

	Abstract syntax
	Metamodeling formalism
	The RPG metamodel
	Constraints

	Operational semantics
	Comparison with AToMPM
	Abstract and concrete syntax
	Operational and denotational semantics
	Modeling environment

	Conclusion

