
Reading Report on VMTS

Dylan Kiss

University of Antwerp
Middelheimlaan 1
2020 Antwerp

dylan. kiss@ student. uantwerpen. be

Abstract

In this reading report I will give a summary of what I read about VMTS
(Levendovszky et al., 2005), the Visual Modeling and Transformation Sys-
tem, and give an overview of what I plan to do in my project.

Keywords: VMTS, metamodeling, metamodel-based transformations

1. Introduction

The Visual Modeling and Transformation System (VMTS) is a model
editor, storage and transformation software package. It uses an approach
in which model storage and model transformation can be treated uniformly,
linked together by the notion of the metamodel. This metamodel-based
approach provides a highly configurable visual modeling tool. Model trans-
formations in VMTS can be used for model and code generation as well as
for modifying models. VMTS makes use of XML for the representation of its
(meta)models. It has been implemented in .NET using C#, which restricts
its use to the Windows operating system.

2. Metamodeling environment

VMTS is an n-layer metamodeling environment. It uses a simplified
UML class diagram as a metamodel language to define models. If the UML
class diagram is instantiated, there are three layers involved: the UML ob-
ject diagram, the UML class diagram and the metamodel of the UML class
diagram. Besides that, VMTS says it has two more layers: the read-only
meta-metamodel which specifies the metamodeling language, and the one
in the internal structure (a labeled directed graph). The model storage
part of VMTS is called Attributed Graph Architecture Supporting Inheritance

Preprint submitted to Elsevier December 19, 2013

dylan.kiss@student.uantwerpen.be


(AGSI). AGSI layers are designed such that every model can be a metamodel
for others.

AGSI provides three basic graph constructs: nodes, directed edges and
labels assigned to nodes and edges. In order to use this for metamodeling,
some things need to be added. A first thing is that each node and edge holds
a bidirectional connection to other nodes and edges, respectively: this is the
type-instance mapping. A second thing is support for containment hierarchy
through a parent-child bidirectional mapping. A third thing is inheritance
support through a directed mapping from the descendants to the ancestors.
A last thing is support for association classes through the use of pseudo-nodes
with no semantic meaning.

AGSI stores the model attributes (labels in the directed graph) in an XMI-
like format. Meta-attributes, which can be instantiated, are converted to an
XSD file that provides the schema for the XML file storing the attributes on
the instance level.

3. Model transformations

The simplest method to transform models is to traverse them using a
specific programming language and changing appropriate parts of the input
models or producing an output model. Traversing Model Processors (TMP)
offer five basic graph operations for this: create node, connect nodes, delete
node, delete edge and set label. The models and their elements in VMTS
traversing processors are regular objects in an object oriented programming
language. Creating a node is done by creating a new object with a specific
type; deleting a node is done by destroying the object; attributes are set via
member variables with corresponding attribute names; deleting an edge is
done by removing references between objects; adding an edge the other way
round.

Visual Model Processors (VMP) provide a visual alternative way of model
transformation. In VMTS, VMP use graph rewriting as the transformation
technique. A set of rules is defined consisting of a left hand side graph
(LHS) and right hand side graph (RHS). Firing such a rule searches for an
occurrence of the LHS in the host graph and replaces that subgraph with the
RHS. In VMTS, the rewriting rules are specified in terms of the metamodel.
As such, instead of finding a direct occurrence of the LHS, a part of the input
model must be found which instantiates the LHS. Attribute transformation
in VMTS is accomplished by XSLT scripts, since attributes are stored as
XML files.

2



4. Planned work

In my project I will explore the capabilities of VMTS by modeling a role-
playing game. In particular, this will consist of creating an abstract and
concrete syntax for the RPG formalism and performing possible transforma-
tions on such a model to define operational and/or denotational semantics.
I will compare this to my experiences in AToMPM and state the advantages
and disadvantages of VMTS.

Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H., 2005. A Systematic
Approach to Metamodeling Environments and Model Transformation Sys-
tems in VMTS. Electronic Notes in Theoretical Computer Science 127 (1),
65–75.

3


	Introduction
	Metamodeling environment
	Model transformations
	Planned work

