
Spoofax VS Xtext

a language workbench comparative case study

Leonard Elezia

a
University of Antwerp, Antwerp, Belgium

Abstract

Language workbenches are tools that o↵er mechanisms for creating domain-
specific languages. Spoofax and Xtext are two such workbenches. In this
paper a small DSL for a role playing game is designed and implemented with
each tool.
This implementation serves as the comparison basis in order to reach a con-
clusions and find out the strengths and weaknesses of each tool.

Keywords: Spoofax, DSL, Stratego/XT, Xtext, Xtend, rpg

1. Introduction

Language workbenches are tools that o↵er e�cient support for defining,
composing and reusing languages and their IDEs. These workbenches make
the whole development process of a new language a↵ordable and straight-
forward. There have been many tools for creating DSLs through the years.
For today’s standards though, this is not enough. We have grown to expect
more than just a compiler. We expect a full blown IDE with code comple-
tion, error detection and refactoring.
This is where language workbenches shine. They o↵er the possibility to cre-
ate DSLs and use them directly on the same environment without deploying.
They assist with the creation not only of the language but also of the IDE
where the language can be used. In this paper we will compare two such
tools that follow di↵erent approaches in language design.

Email address: Leonard.Elezi@student.uantwerpen.be (Leonard Elezi)

Preprint submitted to Elsevier August 21, 2014



1.1. Comparison Criteria

To compare the tools some basic criteria have been laid out.

• Collaboration with other tools
Development tools nowadays are rarely used in isolation. A language
workbench should also be integrated with other tools such as version
control systems and build/testing environment.

• IDE features Modern IDEs like Eclipse have many features like high-
lighting, error checking, debugging refactoring etc. Also it should pro-
vide means for exploring the language and documentation. This is es-
pecially useful when creating a DSL. Also it should assist the developer
when creating and designing a DSL and o↵er tools to also implement
IDE support for the DSL.

• Testing and Debugging This can be considered part of the IDEs features
but since it’s such a crucial step when developing we have given it it’s
own spot. What does the workbench in terms of debugging and testing
the DSL?

• Concrete and Abstract Syntax How do the workbenches define language
structure and syntax?

• Constraints Constraints are used to ensure the static semantics of a
language. How are they implemented in our two tools?

• Transformation and generation When transformation or generation is
performed, another artifact is created from a program, usually another
program in a less abstract language.

In the sections to come we will explain how the tools behave when mea-
sured to the criteria above.

1.2. Spoofax

Spoofax is a platform for developing textual domain-specific languages
with full-featured Eclipse editor plugins. With the Spoofax/IMP language
workbench, you can write the grammar of your language using the high-
level SDF grammar formalism. Based on this grammar, basic editor services
such as syntax highlighting and code folding are automatically provided.
Using high-level descriptor languages, these services can be customized. More
sophisticated services such as error marking and content completion can be
specified using rewrite rules in the Stratego language.[ref01]

2



1.3. Xtext

With Xtext you can create your very own languages in a snap no matter
if you want to create a small textual domain-specific language or a full-
blown general purpose programming language. Also if you already have
an existing language but it lacks decent tool support, you can use Xtext
to create a sophisticated Eclipse-based development environment providing
editing experience known from modern Java IDEs in a surprisingly short
amount of time. We call Xtext a language development framework. [ref02]

2. RPG DSL

We chose to design a DSL that will allow us to model role playing games
(RPGs) after. We first design the DSL and implement the grammar, then add
constraints and in the end performa code generation. The code that results
we execute it in a python game framework which will show an animation of
the RPG. Our RPG language has the following requirements:

• An RPGGame consists of exactly one scene (or ”level”). The scene has
a name, such as Forest, Desert, Castle, etc.

• The scene has a number of connected tiles

• Tiles can be connected to each other from the left, right, top or bottom.
This way, a map is created for the scene.

• In the game, there is one character: the hero. The hero is always on
exactly one tile.

• A tile can be an empty tile, or an obstacle, on which no character can
stand.

• On an ”standard” tile (not an obstacle), there can be a goal. There
must be one goal.

Note that our implementation does not satisfy each and every one of these
requirements but mostly serves as a proof of concept. The language we came
up with was:

rpg FirstGame {
scene HelloWorld{

width=2;

3



he ight =2;
t i l e t i l e 0 {

x=0;
y=0;

}
t i l e t i l e 1 {

x=0;
y=1;

}
t i l e t i l e 2 {

x=1;
y=0;

}
t i l e t i l e 3 {

x=1;
y=1;

}
hero per seus {

t i l e = t i l e 0 ;
}
goa l win {

t i l e = t i l e 3 ;
}

}
}

We have a rpg game container which can contain only one scene. The
scene on the other hand has the size, a number of tiles, one hero and one
goal. The tiles have their coordinates and the hero with the goal have the tile
on which they stand defined. Right of the bat we can come up with many
constraints we need to implement in order for the language to be as complete
as possible. For example check that the hero and the goal don’t stand on
the same tile, or even that the tile they are standing actually exists. But
since this is mostly a proof of concept we have only implemented constraints
regarding the number of heroes or goals a scene should have, or the number
of scenes a world/game can have.

4



3. Concrete and abstract syntax

The concrete syntax of a language is what the user interacts with to
create programs. Basically the language we came up with in the above sec-
tion. In our case it is textual for both of our tools. The abstract syntax is
what it’s called a data structure that holds the fundamental information in
a program, but without notations of the concrete syntax like keywords, sym-
bols, comments etc. Basically the abstract syntax is a tree data structure.
Both Spoofax and Xtext use what it is considered a parser based approach
in generating the abstract syntax tree (AST). Basically the concrete syntax
gets parsed, non-core information gets ”discarded” and the abstract syntax
tree gets created. The way the AST is respresented in Spoofax is through
ATerms (a structure similiar to XML or JSON) while Xtext is heavily de-
pendent on the Ecore models. Basically in Xtext the AST is represented as
an instance of Ecore. The syntax of the language in Spoofax is described
by using SDF while in Xtext by using an EBNF-like notation which also
specifies the mapping to the abstract syntax.

3.1. Xtext

Part of the grammar for the language defined in Xtext:

Model : rpg = RPG;
RPG:

’ rpg ’ name=ID ’{ ’
s c ene s = Scene

’} ’
;

Scene :
’ scene ’ name=ID ’{ ’

’ width ’ ’= ’ width=INT ’ ; ’
’ he ight ’ ’= ’ he ight=INT ’ ; ’
t i l e s+=Ti l e+
hero=Hero
goa l=Goal
ob s t a c l e s+=Obstac le ⇤

’} ’
;

5



The code is self explanatory. We first create a model, rpg in this case
which is comprised of the RPG rule. Then we define the RPG rule to be of
the rpg keyword followed by a name followed by an opening bracket. Inside
we want to have a scene which is given to us by the Scene rule. After the scene
is declared we close the bracket. The Scene rule follows the same pattern.

3.2. Spoofax

Defining the grammar in Spoofax is a tad complicated and it requires a
while to get the head around it. As we learned the best thing to do is work
side by side with an example file to test the grammar while you are building
it. Also if you actually fill the RPG.rdf3 file it will automatically update the
RPG.rdf file which has the real grammar. The rdf3 file is a nice and intuitive
way to edit the grammar.
As can be seen from the figure above our grammar specifies a module RPG.
The good thing about Spoofax is that it is modular, which means that we
can modularize our program and important only the parts that we actually
need at a specific time. The next line does just that, imports a module called
Common. Then we declare where the parsing should start and after we define
the rules which will take the form of ATerms after.
All this is done through the help of the SDF (Syntax Definition Formalism).
The rule in a nutshell is that the pattern on the left-handed side of the arrow
is matched by the symbol of the right handed side. After the right handed
side annotations maybe specified using curly brackets.

” rpg” ID ”{” De f i n i t i o n+ ”}” �> Star t { cons (”RPG”)}

6



4. Constraints

Constraints are Boolean expressions that must be true for every program
expressed in a specific language. Since not all the programs that conform to
the grammar, are valid programs we need constraints to enforce and ensure
the static semantics of a language.

4.1. Xtext

Constraints in Xtext are implemented in Java or Xtend. They are added
to a validator class generated by the Xtext project wizard. We did not
implement any constraint in our project, except the ones implemented in the
grammar itself.

4.2. Spoofax

Spoofax uses rewrite rules to specify all the constraints. This is done
through the Stratego/XT framework. They are easy to recognize because
they exist in files with extension .str. There are two types of constraint rules
in Spoofax: Basic and Index-Based. Basic are constraint such as constraint-
error, constraint-warning which indicate constraints that trigger specific ac-
tions when an error or a warning occurs. Usually these constraints are over-
written by developers. Index based constraint rules are rules that need to
interact with the Spoofax index.

5. Transformation and generation

In both transformation and generation another artifact is created from
a program, usually with a less abstract language. With transformation the
created artifact is an AST while code generation a textual concrete syntax
is created.

5.1. Xtext

Since Xtext is based on EMF, any tool that can generate code from EMF
models can be used. In our example we used Xtend, since it’s the recom-
mended one. Our generator is an Xtend class that implements IGenerator
which requires doGenerate method to be implemented. The code below shows
the implementation:

7



First we iterate over each scene and for each scene we begin the code
generation process. Since we don’t need fine grain structure we decided to go
for a template based approach with the code generation. We first generate
the code for the scene then for the tiles and then for the hero and the goal.
Keep in mind that the code generated is Python and not Java.

8



5.2. Spoofax

As said previously in Spoofax code generations is specified by rewrite rules.
This has the advantage of being the same for model to model transforma-
tion also. We use string interpolation, which in the code it happens inside
$[...] brackets and allows us to combine fixed text with variables bounded
to strings. One thing worth noting is that the string interpolation preserves
indentation and since we were generating python code it was not good. We
had to manually adjust the indentation at the end of the generation in order
for the code to run.

9



6. IDE features

IDE features are the features that the workbench is able to give to the
IDE which will be used to develop the DSL. We didn’t do any experiment
here but used the ones out of the box. There is no doubt here that Xtext has
better support out of the box then Spoofax. Code completion, error detection
and syntax coloring were particularly better. Spoofax also supports them but
you also have to dig around alot to know how to activate them.

7. DSL testing

Both Spoofax and Xtext o↵er support for testing and debugging the DSL
and also unit testing during development. There is no particular favorite in
here since we used very little tests. Also the debugging process is way easier
in Xtext. With Spoofax you have to download the nightly build to enable
debugging and go from there.

8. Conclusions

Both Spoofax and Xtext represent state of the art language workbenches.
From the development of our RPG DSL it was our experience that Xtext is
more popular and has many resources available in case you need help. Also
the functionality and user experience provided out of the box with Xtext
is richer. With Spoofax there is only the o�cial site. Spoofax seems to be
mostly used in academic environment. Though we would argue that if you
get the hang of rewrite rules and SDF Spoofax is a very powerful tool.

9. Bibliography

(a) http://strategoxt.org/Spoofax [ref01]

(b) http://www.eclipse.org/Xtext/ [ref02]

(c) DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages (2013), pp. 1-558 by Markus Voelter, Sebastian Benz, Chris-
tian Dietrich, et al. [ref03]

(d) Implementing Domain-Specific Languages with Xtext and Xtend, L.Bettini
[ref04]

10



(e) Lennart C.L. Kats and Eelco Visser. 2010. The spoofax language work-
bench: rules for declarative specification of languages and IDEs. In
Proceedings of the ACM international conference on Object oriented
programming systems languages and applications (OOPSLA ’10).

11


