
University of Alabama

Software Engineering Group
Department of Computer Science

College of Engineering

Eugene Syriani

Model Transformation

MOTIVATION

• Suppose I ask you to provide a software that converts any E-R
diagram into a UML class diagram, how would you achieve that?

2

Model Transformation

MOTIVATION

• Suppose I ask you to provide a software that converts any E-R diagram
into a UML class diagram, how would you achieve that?

• Assumptions in E-R:

– Entities & relations can contain attributes

– Attributes can be of type:
NUM, CHAR, TIMESTAMP, BIT

– An entity may have one or more primary attributes

– Relations relate 1-* or *-* entities

– IS-A relationship between entities can be used

• Assumptions in UML CD:

– Classes, associations, attributes, and inheritance can be used

– Attributes may be of any type

– OCL constraints may be defined

Model Transformation

THE “PROGRAMMING” SOLUTION

• Write a program that takes as input a .ER file and outputs a .UML
file (or something similar)

• What are the issues?

– What if the ER file is a diagram? in XML format? Probably end up limiting
input from a specific tool only

– Similarly in UML, should I output a diagram (in Dia or Visio)? In XMI? In
code (Java, C#)?

– How do I organize my program?

 Requires knowledge from both domains

 Need a loader (from input file)

 Need some kind of visitor to traverse the model, probably graph-like data
structure

 Need to encode a “transformer”

 Need to develop a UML printer

• Not an easy task after all…

Model Transformation

THE “MODELING” WAY

1. Describe a meta-model of ER

– Define concepts and concrete visual syntax

– Generate an editor

2. Describe a meta-model of UML (same thing)

3. Define a transformation T: MMER->MMUML

– This is done in the form of rules with pre/post-conditions

 describes “what to transform” instead of “how to transform”

• Code is automatically generated from the trafo model to a trafo
instance that produces the result

• Some MT languages give you a bi-directional solution for free!

Model Transformation

PROS & CONS

+ Programming techniques are well-proven, it is a reliable solution

— Defined at the level of the code

— Evolution, extension and maintenance more tedious

— More likely to make errors

— Incoherent abstraction mismatch between

• The in/output artifacts: they represent designs models

• The transformation between them: which is pure code

Programing solution

Model Transformation

PROS & CONS

+ In/output & trafo models are all defined at the same level of
abstraction, in the same domain:

• No need to add an extra “programmer” resource to the project

+ Much faster solution thanks to rule-based approach & automatic
code synthesis

+ Alteration of the transformation process are automatically
reflected in the final software product

+ You get a modeling environment for ER & UML for free!

• No need to read from external non-standard tool anymore

— Young technology, few people understand it & master it, many
challenges still need to be solved

Modeling solution

Model Transformation

PROS & CONS

 You typically encounter the same problems in the modeling solution as
in the programing solution

 The difference is that you can find the problems more easily, fix them
very quickly and re-deploy the solution automatically

 Also, it does not require the developer to be a computer scientist or a
software engineer. The person who defines the requirements can
develop the solution as well

 The bottom line is that you save time, reduce the cost, fulfill the entire
scope and deliver a high-quality product

In practice

Model Transformation

SO WHAT ARE WE DOING HERE?

• It seems that Model-based Design is the “Holy Grail” of software
engineering

• Well, the devil is in the details…

• We will explore

– The techniques that I mentioned

– Identify some of the remaining hot challenges in MDE

– Solve some of these challenges

Model Transformation

10

Model Transformation

MODELS ARE EVERYWHERE

• How to modify them in a safe, structured way?

• How to establish logical relations, mapping between them?

• How to explicitly specify their semantics?

• How to generate code from them?

• In fact, how can we manipulate them?

• Model Transformation is a sub-field of MDE, responsible for
bringing your models to life

11

Model Transformation

SOME DEFINITIONS

“The process of converting one model to another model of the same
system.”

OMG 2003

“The automatic generation of a target model from a source model,
according to a transformation definition.”

Kleppe 2003

“The automatic manipulation of a model with a specific intention.”

Syriani 2011

12

Model Transformation

TERMINOLOGY

Model-to-model
transformation

• Transformation
defined at the meta-
model level

• Execution of
transformation is
applied on the
models to
automatically
transform them

13

Model Transformation

TRANSFORMATIONS

14

Reposi
tory

Model Transformation

SOFTWARE LANGUAGE ENGINEERING P.O.V.

• The meta-model of a language L defines:

– The abstract syntax of L

– The static semantics of L

• A transformation defined on L can define the dynamic semantics
of L: how model instances behave

15

Model
Transformation Meta-Model

Language

Semantic
Mapping

Concrete
Syntax

Abstract
Syntax

Semantic
Domain

Syntax Semantics

Syntax
Mapping

Pragmatics

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• A model transformation performs a manipulation on a model.

• Simple operations on a model:

– Add an element to the model;

– Remove an element from the model;

– Update an element’s properties;

– Access an element or its properties.

• These primitive operations are know as the CRUD operations
(Create, Read, Update, Delete)

Manipulation

16

Amrani, M.; Dingel, J.; Lambers, L.; Lúcio, L.; Salay, R.; Selim, G.; Syriani, E. & Wimmer, M. Towards a Model Transformation
Intent Catalog. MoDELS Workshop on Analysis of Model Transformation, ACM, 2012

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

A query is still a transformation

• What is a query?

– A query is an operation that requests some information about a system.

– This operation takes as input the model M and outputs a view of M.

– A view is a projection of (a sub-set of) of M.

• Restrictive view: Reveal a proper subset of M (all, none, some)

– Retrieve all cycles in a causal block diagram

– Show only classes/associations of a class diagram

• Aggregated view: Restriction of M modifying some of its properties

– Get the average of all costs per catalogue product in a relational database
schema

– In a hierarchical model, show top-level elements only, with an extra attribute
denoting the number of sub-elements

Query

17

Model Transformation

QUESTION

18

 It is a projection, obtained by CRUD operations on the properties
of M.

Is a query a transformation? Why?

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Transform from a higher level specification to a lower level
description

– M1 refines M2 if M1 can answer all questions that M2 can

Refinement

19

NFA to DFA

Deterministic state automata (DFA) Non-deterministic state automata (NFA)

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Inverse of refinement

– M1 refines M2 then M2 is an abstraction of M1

Abstraction

20

DFA to NFA

Deterministic state automata (DFA) Non-deterministic state automata (NFA)

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Model is synthesized into a well-defined language format that can
be stored, such as in serialization

• Model-to-code generation

– Case where the target language is source code in a programming language

Synthesis

21

Statecharts to Python Compiler

Statecharts model Generated Python code

if e == 0: # event “e"

 if table[1] and self.isInState(1) and self.testCondition(3):

 if (scheduler == self or scheduler == None) and table[1]:

 self.runActionCode(4) # output action(s1)

 self.runExitActionsForStates(-1)

 self.clearEnteredStates()

 self.changeState(1, 0)

 self.runEnterActionsForStates(self.StatesEntered, 1)

 self.applyMask(DigitalWatchStatechart.OrthogonalTable[1], table)

 handled = 1

 if table[0] and self.isInState(0) and self.testCondition(4):

 if (scheduler == self or scheduler == None) and table[0]:

 self.runActionCode(5) # output action(s2)

 self.runExitActionsForStates(-1)

 self.clearEnteredStates()

 self.changeState(0, 0)

 self.runEnterActionsForStates(self.StatesEntered, 1)

 self.applyMask(DigitalWatchStatechart.OrthogonalTable[0], table)

 handled = 1

e

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Inverse of synthesis: extracts higher level specifications from
lower level ones.

– UML class diagrams can be generated from Java with Fujaba

• If the same model transformation T synthesizes M1 into M2 and
reverse engineers M2 to M1, then T is said to be a bi-directional
transformation.

Reverse Engineering

22

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Refinement with respect to negated properties

– M1 approximates M2 if M1 negates the answer to all questions that M1
negates

• In practice, M2 is an idealization of M1 where an approximation is
only extremely likely

Approximation

23

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• The semantics of the source formalism is given in terms of the semantics of the target
formalism.

• Semantic mapping function of the original language defined by a MT that translates any
of its instances to a valid instance of the reference formalism with well-defined
semantics.

• Inter-formalism transformation (a.k.a. m2m transformation)

Translational semantics

24 PhoneApps DSM of a conference registration mobile application Representation of the model in Statecharts

PhoneApps To Statecharts

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Map a modeling language to a formalism that can be analyzed
more appropriately than the original language

– The target language is typically a formal language with known analysis
techniques

Analysis

25

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Update the state of the model

• In this case, the source and target meta-models are identical.

• Moreover, the target model is an “updated” version of the source
model: no new model is created

Operational Semantics – Simulation

26

FSA Simulator

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

Model transformation can be used to specify mappings within the language too.
It can be used only if both the abstract and concrete syntax are themselves
modelled.

• Rendering

– Mapping from the abstract syntax to possibly several concrete
representations (textual, graphical, ...)

– 1 abstract syntax to many concrete syntaxes

• Parser

– Mapping from the concrete syntax to the corresponding abstract syntax
(graph)

– 1 concrete syntax to 1 abstract syntax

Relation between Abstract and Concrete syntax

27

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Decrease syntactic complexity

– Translate complex language constructs into more primitive language
constructs

– Transform all uses of a language construct in a normal or canonical form

Normalization

28

H H

H

H

C

H

H

C O CH3 CH2 OH

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Automatically generate random models that conform to the
language

• This is very useful, especially for model-based testing

Meta-model instance generation

29

Class diagram meta-model

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Transform from a software model written in one language or
framework into another, but keeping the same level of
abstraction

• Evolution to new version

Migration

30
Enterprise Java Beans 3.0 Enterprise Java Beans 2.0

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Improve certain operational qualities of the model while
preserving its semantics

• Typically used on architecture or design models

Optimization

31

N-ary to binary association

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Change the internal structure of the model to improve certain
quality characteristics without changing its observable behaviour

– Understandability, modifiability, reusability, modularity, adaptability

Refactoring

32

Pull up method refactoring

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

• Integrate models that have been produced in isolation into a
compound model

Composition

33

Model merging

Model weaving

Model Transformation

TYPICAL USES OF MODEL TRANSFORMATION

Integrate models that have evolved in isolation but that are subject to global
consistency constraints

• In contrast with composition, synchronization requires that changes are
propagated to the models that are being integrated

• Source model changes are propagated to corresponding target model changes:
Incremental / Change-driven transformation.

• Synchronization must be ensured in both directions: multi-directional
transformation.

• Inconsistency management

Synchronization

34

Repo
sitory

Model Transformation

VOCABULARY

• Relationship between source & target meta-models

– Endogenous: Source meta-model = Target meta-model

– Exogenous: Source meta-model ≠ Target meta-model

• Relationship between source & target models

– In-place: Transformation executed within the same model

– Out-place: Transformation produces a different model

35

Endogenous Exogenous Either

In-place Manipulation, Simulation X X

Out-place Restrictive query
Aggregate query, Synthesis,

Reverse engineering,
Migration

Normalization, Composition,
Synchronization

Either Optimization, Refactoring X X

Model Transformation

VOCABULARY

• Horizontal: source and target models reside at the same
abstraction level

• Vertical: source and target models reside at different abstraction
levels

Abstraction level

36

Endogenous Exogenous Either

Horizontal
Manipulation, Simulation, API

migration
Language migration Composition

Vertical

Refinement, Refactoring,
Restrictive query, Optimization,

Normalization

Aggregate query, Synthesis,
Reverse engineering,

Desugaring
X

Model Transformation

VOCABULARY

• Syntactical vs. Semantical Transformations

– A syntactical transformation solely modifies the representation of the
model

– In a semantical transformation, the output model has a different meaning
than the input model, although the representation of the latter may or
may not have been modified.

37

Model transformation chain to compile a DSM into executable Java code

DSM
in CS

ASG Code
parse

refactor/optimize

synthesize

ASG’

Model Transformation

QUESTION

38

 Syntactical: Query, Synthesis, Rendering, Parsing, Normalization,
Model Generation

 Semantical: Manipulation, Abstraction, Refinement,
Approximation, Translation, Analysis, Simulation, Migration,
Optimization, Refactoring, Composition, Synchronization

Which transformation intent is syntactical and which is
semantical?

Manipulation, Query, Synthesis, Abstraction, Refinement,
Approximation, Translation, Analysis, Simulation, Rendering,

Parsing, Normalization, Model Generation, Migration,
Optimization, Refactoring, Composition, Synchronization

Model Transformation

39

Model Transformation

STATIC SEMANTICS (META-MODEL)

40 de Lara, J. & Vangheluwe, H. AToM3: A Tool for Multi-formalism and Meta-Modelling. FASE'02, LNCS: 2306, pp. 174-188, Springer-Verlag 2002.

Model Transformation

CONCRETE SYNTAX

41

Model Transformation

GENERATE MODELING ENVIRONMENT

42

Model Transformation

GRAPH TRANSFORMATION TO SPECIFY SEMANTICS
OF LANGUAGE

43

Model Transformation

RULE-BASED MODEL TRANSFORMATION

44

right

right

left

right

left

up down up down

right

L K R

G

gLink gLink

gLink

pLink fLink

right

left

right

left

up down up down

H

gLink

pLink fLink

m

If there exists an occurrence of L in G then replace it with R

Transformation
rule

Input model

Model Transformation

OPERATIONAL SEMANTICS

45 L H S R H S N A C

L H S R H S

L H S R H S

L H S R H S

Model Transformation

SIMULATION OF A MODEL

46

1. pacmanDie

2. pacmanEat

3. ghostMoveLeft

4. ghostMoveRight

5. ghostMoveUp

6. ghostMoveDown

7. pacmanMoveLeft

8. pacmanMoveRight

9. pacmanMoveUp

10. pacmanMoveDown

P1

P2

P3

Model Transformation

MODEL TRANSFORMATION DEVELOPMENT

• Given input model

• Run transformation

– Rules

– Unordered, Priority, Layer, Control Flow

• Output

– New model

– Modified model

Execution

47

Model Transformation

48

Model Transformation

IN A MDE FRAMEWORK

• Everything is modelled
Therefore a change will always be on a model.

• We explicitly model everything
A change or modification must itself be modeled models of
transformations.

• 𝜹 represents an intentional change (or alteration) of M, which yields M’

• MM𝜹 defines all possible changes for the same intention from an
instance of MM to an instance of MM’

49

M M’

MM MM’ MM
co

n
fo

rm
s

to

co
n

fo
rm

s
to

co
n

fo
rm

s
to

Model Transformation

MODELS, META-MODELS & TRANSFORMATIONS

• T: operation that transforms the model M1 into M2.

• MT: model of a transformation that transforms any model from MM1 into a
model from MM2.

• MMT: meta-model of all transformations that transform models from any meta-
model.

• MMM: meta-model of the language used to describe meta-models.

50

M M’

T

MM1 MM2 MMT

MMM

MT

conforms to

is modelled by

transformed to

Model Transformation

MODEL OF MODEL TRANSFORMATION

• MMTU: meta-model of the transformation units

– rules, queries, primitive operators, helper functions, modules/packages

• MMSC: meta-model of the scheduling language

– programing lang, workflow lang, modeling lang, DSL for scheduling trafos

• MMPL: meta-model of the pattern language

– model fragments specified in the pre- and post-conditions of transformation rules

51

M1 M2

T

MM1 MM2 MMT

MMM

MT

Model Transformation

FEATURES OF MTL

Using feature diagrams

52

Model Transformation

FEATURES OF MODEL TRANSFORMATION
LANGUAGES [Czarnecki06]

53

• Specification
Pre/post condition on the transformation:
• Function between source & target models
• Relation may be executable or not

• Transformation Rules
Smallest transformation unit, used to specify a
transformation
• Rule-based transformations: pre-condition & post-condition for

rewriting
• Transformation units defined as functions
• Templates

• Rule Organization
General structuring issues of

rules
• Modularization
• Composition
• Re-use

• Source-Target Relationship
• In-place
• Out-place

• Incrementality
Ability to update existing target models based on changes

in the source models

• Directionality
Transformation executed in one direction or in multiple

directions (uni-/multi-directional transformation)

• Tracing
Mechanisms for recording different aspects of

transformation execution:
• Create & maintain trace links between source & target model

elements

• Rule Application Control
• Where is a rule applied on the model
• In what order are the rules executed

Model Transformation

TRANSFORMATION RULES

• Smallest transformation units

• A model transformation is mainly specified in terms of rules

54

:

:

Model Transformation

DOMAIN OF A TRANSFORMATION

• Defines how a rule can access elements of the models

• 1..* domains: examples of 1-way transformation? 2-way? n-way?

• Domain language

– The language in which models are defined. Typically MOF

• Domain Modes

– Read-only: source domain of synthesis

– Write-only: target domain of synthesis

– Read-write: domain of simulation

55

top relation PackageToSchema {

domain uml p:Package {name = pn}

domain rdbms s:Schema {name = pn}

}

QVT-Relations rule

Model Transformation

BODY OF A RULE

• Model fragment internally represented as:

– Strings: Template-based transformation

– Terms: tree representation of models

– Graph: Model-to-model transformation

• Using a specific syntax (textual, graphical)

– Abstract syntax

– Concrete syntax

• Syntactic separation

Patterns

56

module Person2Contact;

create OUT: MMb from IN: MMa {

rule Start {

 form p: MMa!Person(

 p.function = ‘Boss’

)

 to c: MMb!Contact(

 name <- p.first_name +

p.last_name)

}

ATL rule

MoTif rule

FUJABA: compact notation

Model Transformation

RULE LOGIC
How computations & constraints are specified on model elements

57

Imperative Declarative

Executable
Java API for MOF

models
OCL query

Non-executable X
Graph trafo

rule

Kermeta operation [Falleri06]

operation transform(source:PackageHierarchy): DataBase is

do

 result := DataBase.new

 trace.initStep(“uml2db”)

 source.hierarchy.each{ pkg |

 var scm: Schema init Schema.new

 scm.name := String.clone(pkg.name)

 result.schema.add(scm)

 trace.addlink(“uml2db”, “package2schema", pkg, scm)

 }

end

top relation PackageToSchema {

 domain uml p:Package{name=pn}

 domain rdbms s:Schema{name=pn}

}

QVT-Relations rule

Model Transformation

DIRECTIONALITY

• Unidirectional : create (or update) the target model only

• Multi-directional: can be executed in any direction

– Multi-directional rules

• Operational rules have a functional character: given an input model,
produce a target model.

– Causality from source to target model

• Declarative rules: gives a relation between both models that must be
satisfied

– Acausal relationship between the models

Ability to execute the transformation in different directions

58

top relation PackageToSchema {

domain uml p:Package {name = n}

domain rdbms s:Schema {name = n}

}

QVT-Relations rule

TGG rule [Schurr94]

Model Transformation

INCREMENTALITY

• An incremental transformation is defined as a set of relations between a
source and target meta-models. These relations define constraints on
models to be synchronized.

• The first time it is run, it creates a target model. Trace links are often
automatically created.

• Then, if a change is detected in one of the models, it propagates this
change to the other model, by adding, removing, or updating an
element so that the relations are still satisfied.

• There are 4 standard scenarios in model synchronization:

– Create a target model from the source model

– Propagate changes in the source model to the target model

– Propagate changes in the target model to the source model

– Verify consistency between the two models

59

Model Transformation

TRACING

• Traceability links connect source & target elements
They are instances of the mappings between the domains

– Impact analysis

– Direction of the synchronization

– Debugging transformations

• Automatic creation of trace links: QVT, ATL

• Traces can be considered as any other model, but has to be
manually created:
e.g., AGG , AToM3 , VIATRA

Runtime footprint of a transformation execution

60

Model Transformation

INTERMEDIATE STRUCTURES

• AToM3: generic links, simplifies the transformation rules

• ATL: automatic creation of traceability links.
Each newly created element is linked back to element(s) of the
source model.

• AGG and VIATRA: make use of traceability to prevent a rule from
being applied on the same element.

Creation of additional elements which are not part of the domain

61

MoTif rule

Model Transformation

PARAMETERIZATION

• Pre-defined binding of some model elements

• ProGreS: variable parameter passing

• GReAT, MoTif: pivot nodes

Control Parameters

62

ProGreS in/out parameters

GReAT pivot passing

MoTif pivots

Model Transformation

PARAMETERIZATION

• Pass element types to rules

• In this case, the types of the elements in the patterns are variable

Generics

63

VIATRA generic rule

Model Transformation

PARAMETERIZATION

• Takes a rule as input and outputs another rule

Higher-Order Transformation (HOT)

64

Model Transformation

LOCATION DETERMINATION

• Deterministic: same choices will be made every time

• Non-deterministic

– One-point: once choice is made, at random (repeated?)

– Concurrent: all occurrences

 Critical pair analysis to ensure there are no overlapping matches

• Interactive: choice resolved by user/external intervention

Strategy for determining the application locations of a rule

65

Model:

Rule:

Model Transformation

RULE SCHEDULING

• Implicit: completely determined by the design logic of the rules

– Unordered: One rule that is applicable is selected to be applied non-
deterministically at each iteration

– Grammar: unordered with start model and terminal states (generation or
recognition)

• E.g., Groove, MOMENT2

Strategy for determining the order in which the rules are applied

66

Model: Rules:

,

Model Transformation

RULE SCHEDULING

• Explicit internal: a rule may invoke other rules.

– In ATL, a matched rule (implicitly scheduled) may invoke a called rule in its
imperative part. Lazy rules

– In QVT, the when/where clauses of a rule may have a reference to other rules.

 When: the former will be applied after the latter

 Where: the latter will be applied after the former

Strategy for determining the order in which the rules are applied

67

top relation ClassToTable {

 domain uml c:Class {

package = p:Package{},

isPersistent = true,

name = cn

 }

 domain rdbms t:Table {

 schema = s:Schema{},

 name = cn,

 cols = cl:Column {

 name = cn + ‘_tid’,

 type = ‘NUMBER’},

 pkey = cl

 }

 when {

 PackageToSchema (p, s);

 }

 where {

 AttributeToColumn (c, t);

 }

}

Model Transformation

RULE SCHEDULING

• Explicit external: clear separation between the rules and the
scheduling logic.
Use a control structure to define rule scheduling

• Ordered: priority, layer/phased, explicit workflow structure, …

• Event-driven: rule execution is triggered by external events

Strategy for determining the order in which the rules are applied

68

Model Transformation

RULE SCHEDULING

Priority-based: AToM3

69

Model Transformation

RULE SCHEDULING

Layered/Phased: AGG

70

Model Transformation

RULE SCHEDULING

Priority-based: AToM3

71

GReAT data flow

FUJABA story diagram

Model Transformation

EXPLICIT SCHEDULING FEATURES

72

PRoGReS FUJABA VIATRA AToM3 GReAT VMTS MoTif

Control
structure

Imperative
language

Story
Diagram

Abstract state
machine

Priority
ordering

Data flow
Activity
diagram

DEVS

Atomicity
transaction,

rule
Rule gtrule Rule Expression Step ARule

Sequencing & Yes seq Implicit Yes Yes Yes

Branching choose...else
Branch
activity

if-then-else No Test / Case
Decision step,

OCL
Query

Looping loop
For-all
pattern

iterate, forall Implicit Yes Self loop
FRule, SRule,

LRule

Non-
determinism

and, or No random Within layer
1−n

connection
No

Selector
pattern

Recursion Yes No Yes No Yes Yes Yes

Parallelism No Optional No Optional No Fork, Join
Synchronizer

pattern

Back-
tracking

Implicit No
Choose

(implicit)
No No No XRule

Hierarchy Modularisation Nested state Yes No
Block,

ForBlock
High-level

step
CRule

Model Transformation

DIFFERENT MODEL TRANSFORMATION
APPROACHES

• Model-to-text (concrete syntax)

– Visitor-based: traverse the model in an object-oriented framework

– Template-based: target syntax with meta-code to access source model

• Model-to-Model

– Direct manipulation: access to the API of M3 and modify the models directly

– Operational: similar to direct manipulation but at the model-level (OCL)

– Rule-based

 Graph transformation: implements directly the theory of graph transformation,
where models are represented as typed, attributed, labelled, graphs in category
theory. It is a declarative way of describing operations on models.

 Relational: declarative describing mathematical relations. It define constraints
relating source and target elements that need to be solved. They are naturally multi-
directional, but in-place transformation is harder to achieve

73

Model Transformation

74

Model Transformation

BY EXAMPLE

75

Model Transformation

UNORDERED RULES

76 L H S R H S N A C

L H S R H S

L H S R H S

L H S R H S

Model Transformation

RULE-BASED MODEL TRANSFORMATION

77

right

right

left

right

left

up down up down

right

L K R

G

gLink gLink

gLink

pLink fLink

right

left

right

left

up down up down

H

gLink

pLink fLink

m

If there exists an occurrence of L in G then replace it with R

Transformation
rule

Input model

Model Transformation

MECHANICS OF RULE APPLICATION

• Matching Phase

– Find an embedding 𝑚 of the LHS pattern 𝐿 in the host graph 𝐺

– An occurrence of 𝐿 is called a match: 𝑚(𝐿)

– Thus, 𝑚(𝐿) is a sub-graph of 𝐺

• Rewriting Phase
Transform 𝐺 so that it satisfies the RHS pattern:

– Remove all elements from 𝑚(𝐿 − 𝐾) from 𝐺

– Create the new elements of 𝑅 − 𝐾 in 𝐺

– Update the properties of the elements in 𝑚(𝐿 ∩ 𝐾)

• When a match of the LHS can be found in 𝐺, the rule is applicable

• When the rewriting phase has been performed, the rule was
successfully applied

78

Model Transformation

NEGATIVE APPLICATION CONDITIONS

Non-applicable rule

79

L H S R H S N A C

Model Transformation

NEGATIVE APPLICATION CONDITIONS

Applicable rule

80

L H S R H S N A C

Model Transformation

HOW TO FIND A MATCH?

• The matching phase is NP-Complete, the rewriting phase is linear.

• There are various exponential-time worst case solutions for pattern
matching, for which the average-time complexity can be reduced with
the help of heuristics

• Search Plan Approach

– Define the traversal order for the nodes of the model to check whether the
LHS can be matched.

– Compute the cost tree of the different search paths and choosing the less
costly one.

– Complex model-specific optimization steps can be carried out for generating
efficient adaptive search plans.

• Constraint Satisfaction Solving Approach (CSP)

– Consider the LHS elements as variables, the elements of model form the
domain and typing, and the links and attribute values form the set of
constraints.

– Based on back-tracking algorithms

81

Model Transformation

QUESTION

82

 𝑶 𝑳 𝑮 + 𝑹 = 𝑶 𝑳 𝑮 CRUD operations

What is the worst upper-bound
of the complexity for applying a rule?

Model Transformation

83

Model Transformation

REWRITING SYSTEMS

• Start symbol: 𝑺

• Terminals: 𝒂, 𝒃

• Non-terminals: 𝑺, 𝑨

• Production rules:
𝑺 → 𝑨𝑺𝒃
𝑨 → 𝒂
𝑺 → 𝜺

From Chomsky Grammars to Graph Grammars

84

,

Model Transformation

REWRITING SYSTEMS

• Signature: 𝟎, 𝒔, 𝒂𝒅𝒅

• Rewrite rules:
𝒂𝒅𝒅 𝟎, 𝒚 → 𝒚

𝒂𝒅𝒅 𝒔 𝒙 , 𝒚 → 𝒔 𝒂𝒅𝒅 𝒙, 𝒚

From Term Rewriting to Graph Rewriting

85

:

Model Transformation

ALGEBRAIC GRAPH TRANSFORMATION

• Based on category theory

• Category: Graphs

– Objects: typed, attributed, labeled, directed graphs
𝐺 = 𝑉, 𝐸, 𝑠, 𝑡
𝑠, 𝑡: 𝐸 → 𝑉

– Morphisms: total graph morphisms in the form
𝑓: 𝐺 → 𝐻 = 𝑓𝑉: 𝑉𝐺 → 𝑉𝐻 , 𝑓𝐸: 𝐸𝐺 → 𝐸𝐻

– Composition:
𝑓 𝐵, 𝐶 ∘ 𝑔 𝐴, 𝐵 = ℎ 𝐴, 𝐶

– Identity:
𝑓 ∘ 𝑖𝑑 = 𝑓

86

Model Transformation

PUSHOUT

A pushout over morphisms 𝑚: 𝐿 → 𝐺 and 𝑟: 𝐿 → 𝑅 is defined by

• a pushout object 𝐻

• morphisms 𝑛: 𝑅 → 𝐻 and 𝑟′: 𝐺 → 𝐻

such that the following diagram commutes

87

Model Transformation

GRAPH TRANSFORMATION RULE

A production 𝑝: 𝐿
𝑙
 𝐾

𝑟
→𝑅 is composed of a pair of injective

morphisms 𝑙: 𝐾 → 𝐿 and 𝑟: 𝐾 → 𝑅 where:

• 𝐿 is the LHS

• 𝑅 is the RHS

• 𝐾 is the interface

88

Model Transformation

GRAPH TRANSFORMATION

• Let 𝑝: 𝐿
𝑙
 𝐾

𝑟
→𝑅 be a graph production

• Let 𝐷 be a context graph

• Let 𝑚:𝐾 → 𝐺 be a total graph morphism (match)

• A Double Pushout (DPO) graph transformation 𝐺
𝑝,𝑚
𝐻 is given by

the DPO diagrams

89

Model Transformation

GRAPH TRAFO APPLICATION

1. Find a match M = 𝑚(𝐿) in 𝐺

2. Remove 𝐿 − 𝐾 from 𝑀 such that the gluing condition 𝐺 −𝑀 ∪
𝑘 𝐾 = 𝐷 still holds

3. Glue 𝑅 − 𝐾 to 𝐷 in order to obtain 𝐻

90

Model Transformation

DPO EXAMPLE

91

Model Transformation

DPO GLUING CONDITIONS

• Identification condition

– No two vertices in the LHS shall be mapped to the same element such that
they must be deleted

– 𝑝0 cannot be applied on 𝐺′

• Dangling condition

– The LHS specifying the deletion of a vertex shall include all its incident
edges

– 𝑝0 cannot be applied on 𝐺′′

92

Model Transformation

• Interface graph: 𝑙, 𝑟 are total
morphisms

• Restrictions on deletion of
nodes & edges

• Safe by construction

• 𝑟 is a partial morphism

• Dangling problem resolution
– Implicitly delete the edges

adjacent to the to-be-deleted
vertex

• Identification problem
– In practice, rule becomes

inapplicable. But still allowed
in theory

• Unsafe, care should be taken

93

DPO VS. SPO

Model Transformation

FAMILY OF TRANSFORMATION LANGUAGES

Model Transformation has many applications:

– Generate PSMs form PIMs and reverse engineering

– Map and synchronize among models at the same or different level of
abstraction

– Create views of a system

– Model evolution tasks

• Since the applications are very different in nature, it is not optimal
to have a single model transformation language that supports all
of the above.

• Instead, it is more appropriate to have dedicated transformation
languages tailored to specific transformation problems.

94

