
Model-checking with the TimeLine formalism

Andrea Zaccara

University of Antwerp

Andrea.Zaccara@student.uantwerpen.be

Abstract

A logical model checker can be an effective tool for verification of software
applications. However, these kind of tools are rarely used, as the requirements
specification use a cumbersome textual notation, such as LTL. Previous work
on the development of the TimeLine formalism shows how these tools can
be made more accessible in many context. This paper describes how this
formalism can be used to visually define safety specifications, and which is
the meaning by mapping it to state automaton.

Keywords: TimeLine formalism, model-checking, state automaton,
run-time monitoring

1. Introduction

The verification of correctness in software application has always been
an important issue in the context of software’s quality. Model checking has
already been proved to be an effective technique to find certain types of
bugs, however it has been applied mostly to small embedded systems. These
techniques have not been incorporated in everyday software development
processes.

This is in part due to the complexity of the algorithms needed to verify
the requirements, but another important factor is the complexity of defining
requirements for the model. These are often specified using temporal logic,
such as LTL, which allows for the specification of complex behavior of the
tested software. However, these languages are defined using a cumbersome
textual notation, which precludes its use to programmers with no expertise
in software verification.



To cope with this limitation, the TimeLine formalism has been proposed
[1]. This formalism was designed to remove the complexity from the definition
and understanding of temporal properties.

To give meaning to models defined with the TimeLine formalism, it was
then mapped to Buchi automatons. The generated automaton can then be
used to check that the original property is true for the model of the system.
However, the model checking is not directly executed on the program, but
on a model obtained by abstracting the existing code. This process, shown
in figure 1, still requires that the system is translated into the appropriate
model, before the automaton can be used to verify the requirements. The
resulting model can then contain errors not present in the source code, or it
can remove errors actually present in it.

Figure 1: The typical process of model-checking

In later works this formalism has been applied to runtime monitoring[2].
Using a model-driven approach, a Domain Specific Modelling Language was
defined in AToM3[3]. This modeling environment allowed for a visual map-
ping to state automaton, using model transformations. This process leads to
a monitor that is directly applicable to any java program, using the aspect-
oriented programming paradigm. This allows for an immediate advantage in
using the TimeLine definition for direct verification of a system, removing
the manual transformation of the system to a model definition.

For both the TimeLine formalism and the transfromation this paper refers
to Bodden et al. definitions[2]. The Timeline formalism is shown in detail in
section 2. The transformation to state automaton is discussed in section 3.
Section 4 presents the starting point for the project implementation.

2



2. The TimeLine formalism

Each model defined with the Timeline specification consists of a single
time line, which is independent of other models. This enables modular rea-
soning, as each rule can check independently for different properties in the
same context.

A time line represents an ordered sequence of events. The first event is
a unique start event, representing the time of start-up of the application.
All events but this start event are associated with a label and one of the
following three event types:

• regular event. Such an event may or may not occur. It imposes no
requirement and is only used to build up context for a complete pattern
match. Regular events are denoted with the letter e.

• required event. A required event must occur, whenever its left-
context on the time line was matched. Required events are denoted
with the letter r.

• fail events. A fail event must not occur after its left context has
matched. Such an event is denoted with the letter X.

Along with these events, a time line can be augmented with constraints,
restricting the matching process. A constraint is defined in-between two
events and it holds a Boolean combination of propositions. It may include
or exclude the start and/or end event it is attached to.

Figure 2: Timeline specification stating that any opened file should be closed and should
not be disposed before closing it

3



In figure 2 an example of a TimeLine model is shown. This rule defines
the following requirements:

1. A file must not be disposed as long as it is open.

2. Any open file is closed at some point in time, before the program exits.

The first requirement is checked as, whenever the context matches the open
event, a dispose event will result in a fail if no close event happens beforehand.

The second requirement is checked as the specification sees the close event
as required, as long as all previous regular events are matched, in this case
only the open event.

Also, the initial constraint !open states that this rule is only interested in
the last open event, as prior ones have already been handled at this point.

2.1. Abstract Syntax

The abstract syntax of the TimeLine formalism defined by Bodden et
al.[2] is shown in figure 3, using a class diagram.

Figure 3: Abstract syntax of the TimeLine formalism in AToM3

The Event is an object with a string label and one of five types: start, reg-
ular, required, fail and end. The end event is artificial. It cannot be specified
by the user and is only used within the translation to finite automaton.

The sequence of the time line is established via an ordering relation. A
further relation between events describes the constraints among them. Each
constraint is modeled as an edge between two events. It can include or
exclude the event at its start and/or end. Furthermore it is labeled with a
string label, stating the actual constraint expression.

The static semantics of the Timeline formalism imposes the following type
checks on correct Timeline specifications.

4



1. Each time line must be fully connected by the Order relationship. In
particular, this order is anti-symmetric, transitive and total.

2. In each time line, the smallest event in this relationship must be of type
start.

3. Each event must have at most one immediate predecessor and successor
in this relationship.

4. When a constraint relation starts at an event e1 and ends at e2, then
e1 must be smaller than e2 in the Order.

5. There must not exist any two subsequent fail events.

6. A constraint may not begin or end at a fail event, unless the fail event
is the first event or last event of the time line.

The first four constraints allow for a meaningful model definition, while
the last two allow for a simpler definition of the model transformation and to
restrict the complexity of any given rule. For example, if in the rule defined
in figure 2 the fail event delete was added, meaning we don’t want to delete
the file we are working on, it would require to check for both fail events at
runtime. The same result can be accomplished with two independent rules,
which are also more easy to understand.

The model transformation are based on the assumption these constraints
are verified.

3. Model transformation to state automaton

The transformation from the TimeLine model to state automaton is de-
fined using AToM3 model transformation. These can be specified by defining
a left-hand side (LHS) for matching objects in the model and right-hand side
(RHS) for defining the result of the transformation of the found objects.

The resulting model is composed of three Meta-models: the TimeLine,
the finite state automaton and the Generic Graph used for tracing links
between the two models. The expected meaning of the model is that it will
accept a sequence of events if it violates the specification.

The transformation is performed in eight sequential transformation stages.

1. Add an end event. The end event is inserted after the last event in the
sequence.

2. Add states. For each event one state is created, which reflects the point
in time immediately before the associated event occurs.

5



The state changes depending on the type of event, for example the
state associated with a required event is defined as an accepting state,
as the monitor has not seen the required event yet. The start event is
not associated with a state.

3. Marking the initial state. The initial state of the automaton is specified
as the state connected to the event immediately after the start event.

4. Adding transitions. For each state one or more transitions are added
depending on the next event.

5. Folding constraints. For any constraint that links to two states which
are not immediate successors, it is divided between all the events in-
between the linked ones.
To do so, the single constraint is replaced with new constraints linked
to every immediate successor in the sequence between the two original
events.

6. Applying the constraints. The constraints are applied to the transition
between states and to the self-loop transitions if it is included on the
associated state.

7. Implement semantics of fail events. The fail state is represented as two
states, one is the same as the other events and represents the point in
time immediately before the associated event occurs. The other is an
accepting state, where the automaton stops if the fail event occurs.

8. Removing the events. These leaves only the resulting finite state au-
tomaton.

6



As an example of the model transformation, in figure 4 the implementa-
tion of step 4 is shown in the AToM3 environment.

Figure 4: The ”Creating transition” step

The detailed model transformation representation for each step is avail-
able in the original paper from Bodden et al.[2].

The application of this sequence of transformation to the model in figure
2 gives the automaton in figure 5 as a result.

Figure 5: Resulting automaton for dispose and close requirements

This automaton can be converted to a monitor for runtime monitor-
ing, which can then be applied using aspect-oriented programming with
AspectJ[4]. Aspect-oriented programming allows for the definition of con-
cerns, which need to be applied to all the components of a system. An
common example is logging, which is a cross-cutting concern that can be

7



implemented once and then applied to all classes and methods using this
paradigm. This application is done during the compilation of the source
code, allowing for an easy generation of monitors for any java program.

4. TimeLine as an Abstraction of Regular Expressions

For this project, I will implement the TimeLine formalism, by defining a
domain-specific language in AToMPM[5]. Compared to the version of AToM3

used in previous works, it enables for a more complete definition of the trans-
formation rules, thanks to negative application conditions (NACs) and the
definition of the transformation schedule.

The expected result is the generation of finite state automaton, which can
be used to parse the trace of a program to check that one specific program
executions the defined specification is verified. It is not as powerful as runtime
monitoring, but it can be applied to any program with a decent use of event
tracing. The case study for this project will be a communication protocol of
a client-server system.

References

[1] M. H. Smith, G. J. Holzmann, K. Etessami, Events and constraints: A
graphical editor for capturing logic requirements of programs, in: aaa
(Ed.), Requirements Engineering, 2001. Proceedings. Fifth IEEE Inter-
national Symposium on, IEEE, 2001, pp. 14–22.

[2] E. Bodden, H. Vangheluwe, Transforming timeline specifications into au-
tomata for runtime monitoring, in: Applications of Graph Transforma-
tions with Industrial Relevance, Springer, 2008, pp. 249–264.

[3] J. Lara, H. Vangheluwe, Atom3: A tool for multi-formalism and meta-
modelling, in: R.-D. Kutsche, H. Weber (Eds.), Fundamental Approaches
to Software Engineering, Vol. 2306 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2002, pp. 174–188.

[4] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Gris-
wold, An overview of aspectj, in: ECOOP 2001Object-Oriented Program-
ming, Springer, 2001, pp. 327–354.

[5] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo,
H. Ergin, Atompm: A web-based modeling environment.

8


