
Using Groove for analysing RPGame models

Brent van Bladel

University of Antwerp, Belgium

Abstract

Domain-specific visual modelling is a relatively new area in the software
engineering. The development of this methodology is accompanied by a need
for good visual modelling tools. A case study shows the different features of
one such tool named GROOVE.

Keywords:
visual modelling language, graph transformation, Groove

1. Introduction

Since object-oriented programming was introduced in the 1960s, there
haven’t been many changes to the way we program. Recently, however, the
concept of using domain-specific (visual) modelling to generate code is be-
coming more popular. As this popularity grows, the need for good visual
modelling tools grows as well. This paper describes the features offered by
one such modelling tool: GROOVE.

GROOVE stands for GRaph-based Object-Oriented VErification. It is
centered around the use of simple graphs for modelling object-oriented sys-
tems, and graph transformations as a basis for model transformation and
operational semantics [1].

This paper will describe the implementation of the RPGame formalism in
GROOVE. Section 2 explains the RPGame formalism and section 3 shows its
implementation in GROOVE. We analyse different models of the RPGame
formalism using GROOVE in section 4. We conclude in section 5.

Preprint submitted to Elsevier January 21, 2015

2. RPGame formalism

2.1. Syntax and Static Semantics

The RPGame formalism describes a simple ’Role Playing Game’. An
RPGame consists of a world that is divided into a number of scenes. Each
scene has a name and contains a number of connected tiles. These tiles can
be connected to each other from the left, right, top or bottom. This way, a
map is created for the scene. A logical positioning of the tiles is expected.
Therefore, if a tile has a left neighbor, that neighbor should have the tile as
its right neighbor, and vice versa. If a tile has a top neighbor, that neighbor
should have the tile as its bottom neighbor, and vice versa.

There are two types of characters: a hero and a villain. Each character
is always located on exactly one tile. The hero and a villain have a health
value that depicts how much damage they can take. The health always has
a strictly positive value. They also have a damage value that depicts how
much damage they inflict. Damage is always strictly positive.

There are three types of tiles: an obstacle, a trap and a door. If a tile is
an obstacle, no character can stand on it. If a tile is empty, it can contain an
item. There are three types of items: a goal, a key and a weapon. An item is
located on exactly one tile that is not an obstacle. A trap and a weapon have
a strictly positive damage value, depicting how much damage they inflict. A
door is a portal to a door on another scene and it can be locked. A key is
connected to a door that it unlocks. There must be at least one goal in the
game.

2.2. Dynamic Semantics

A character can move from one adjacent tile to another, provided it is
not an obstacle and it is not occupied. If the hero moves to a tile containing
an item, the item is picked up. Every item can only be picked up once. The
hero wins if he picks up all goals. When this happens, the game stops.

The hero can pass through a door to enter another scene. If he goes back
through the door, he goes back to the original door at the original scene. A
door can be locked, and the hero must pick up the key for that door to be
able to enter that door.

2

The hero can attack villains and vice versa, if they stand on adjacent
tiles. Villains do not attack each other. The hero and a villain inflict dam-
age according to their damage value when they attack. A trap hurts the
hero, inflicting damage according to its damage value when the hero steps
onto it. A hero can pick up a weapon, that gives the hero additional damage,
according to the damage of the weapon.

The game is simulated in time slices. First, the hero gets one chance
to move or attack. Then, all the villains in the same scene, each get their
chance to move or attack. The order in which the villains get their chance
is not determined. Villains in a different scene from the ”active” scene (i.e.,
the scene in which the hero currently resides) do not do anything.

3. RPGame in GROOVE

3.1. Type Graph

GROOVEs implementation of metamodelling is a type graph. The type
graph specifies the allowed structure of the graphs, as well as the node type
hierarchy, similar to a class diagram. Figure 1 shows the type graph of the
RPGame formalism [2].

Figure 1: Type graph of RPGame in GROOVE

3

This implementation simplifies RPGame formalism to a straightforward
basic idea: a world contains scenes which contain tiles which can contain
something. Therefore we have a World, Scene and Tile type, as well as an
abstract TileOccupant type. They have edges with a ’contains’-label between
them, indicating the containment relations. The Scene type also has a name
attribute and the Tile type has four self-edges to link tiles together: down,
left, right and up.

The TileOccupant type is an abstract type, which is a special kind of
type provided by GROOVE. Abstract types, together with subtyping, allows
for advanced type graphs which are similar to inheritance hierarchies in class
diagrams. An abstract type can’t have object instantiations. However, when
an object with an abstract type is expected, an object with a subtype of that
abstract type should be given.

There are three kinds of TileOccupant types in our implementation of the
RPGame formalism. A TileOccupant can be a Person, which is an abstract
subtype of the TileOccupant type. A Person has a health value and a damage
value as its attributes. A Person object can’t be initiated because Person is
also an abstract type. It has two subtypes: Hero and Villain. A hero has a
name attribute and a villain has a boolean attribute which is needed in the
operational semantics (see section 3.2). A TileOccupant can also be an Item,
which is another abstract subtype. It has three subtypes: Goal, Weapon and
Key. A weapon has a damage value attribute. A key has an edge labelled
’opens’ connected to the door it can unlock. Finally, a TileOccupant can also
define a special kind of tile: an Obstacle, a Trap which has a damage value
attribute or a Door which has a self-edge labelled ’leadsTo’ to link two doors
together.

4

3.2. Transformation rules

With the type graph defined, we can already model instances of the
RPGame formalism. In order to simulate these models, we need transforma-
tion rules to transform the models in specified patterns.

In order to simulate an RPGame, the characters must be able to move.
Figure 2 shows how we implement this in GROOVE. The tile containing the
hero, the hero itself and the tile next to them are matched. The existing
’contains’ edge is removed and a new ’contains’ edge is created between the
hero and the neighboring tile. This rule is not applicable if the neighboring
tile contains an obstacle or another character.

Figure 2: Transformation rule to move the
hero

Figure 3: Transformation rule to let the hero
attack

The characters must also be able to attack. Its implementation in GROOVE
is shown in figure 3. Two adjacent tiles, one containing the hero and one
containing a villain, are matched together with that hero and that villain.
The damage value of the hero is subtracted from the health value of the
villain. This is accomplished with the operation node that takes parameters
π0 and π1 and writes the result to the integer connected with the ’sub’ edge.
This result becomes the new health of the villain: the old ’health’ edge is
deleted and a new ’health’ edge from the villain to this result is created.

5

Figures 2 and 3 merely show one example of the transformation rules
defining movement and attack. The edge between the two neighboring tiles
can be substituted with another direction in order to move or attack in that
direction. The movement and attack transformation rules for the villain
are the same, except with the Hero and Villain types reversed. One other
difference in the transformation rules for villains is that the villain must have
its ’active’ flag set. There may be multiple villains. In order for GROOVE
to keep track of which villain has moved already in a certain time slice, this
’active’ flag is needed.

Figure 4: Transformation rule that activates the villains

Figure 4 shows the transformation rule that sets the ’active’ flag in all
villains in the scene the hero is in. It uses a ’forallx’ node to select every
villain (at least one) in the same rule and add the ’active’ flag. The use of
special, auxiliary nodes that stand for universal or existential quantification
is a feature of GROOVE that allows advanced nested rules [3].

This rule (figure 4) is applied once every time slice. Then, as long as
there are villains that have the ’active’ flag set, one villain moves or attacks.
During its move or attack, that villain loses its ’active’ flag. This keeps
happening until there are no villains left with an ’active’ flag. This setup
allows us to move every villain once in one time slice and is defined in the
control program (see section 3.3).

6

When the hero moves onto a tile that contains an item, a transformation
rule to pick up this item is applied. These transformation rules are straight-
forward: match the hero, the tile containing the hero and the item on that
tile. Then the item is removed. If the item was a key, the ’opens’ edge to the
corresponding door is also removed. This allows us to easily check if a door
is locked. All we have to check is if there is an incoming ’opens’ edge. If the
item was a weapon, the damage value of the weapon and the damage value of
the hero are added together, and the result becomes the new damage value
of the hero.

There are also transformation rules for when the hero moves onto a spe-
cial tile. If the hero moves onto a trap, the damage value of the trap is
subtracted from the health value of the hero. This is similar to what hap-
pens in the attack rules (figure 3). If the hero moves onto an unlocked door,
he is automatically moved to the tile with the door it leads to (following the
’leadsTo’ edge).

Figure 5: Transformation rule checking the end condition

The simulation continues as long as there are goal items in the world
and the hero has a health value greater then zero. This end condition is
implemented in a transformation rule shown in figure 5. A goal item on a
tile is matched, as well as the hero. The hero’s health value is compared with
0, using the ’greater than’ operation. The result of this operation is matched
as True. This rule doesn’t change anything in the model. GROOVE checks
if it is applicable. If it is, the end condition is not yet satisfied and the
simulation can continue.

7

3.3. Control program

Figure 6 shows the control program for the RPGame formalism. The
outer while loop ensures the simulation keeps running as long as the hero is
alive and there are still goals to be collected. This is accomplished by having
the ’isNotFinished’ rule (see figure 5) as the condition for the while loop.
This means that as long as that rule is applicable, the while loop will be
executed. One iteration of this while loop represents one time slice.

The first statement in this while loop is a ’choice’ statement, which rep-
resents a non-deterministic selection between a set of statements. In our case
it gives the choice of moving or attacking with the hero. Each choice result
in a few rules to be applied. If the hero is moved, we immediately try to pick
up an item, activate a trap or use the door. This way, the hero interacts with
the tile right after moving on it. If the hero attacks, we immediately check
if a villain has died.

After the hero has moved or attacked, the villains in the same scene move
or attack. Because there can be multiple villains moving independently of
each other, we need a way of identifying which villain has already moved. To
accomplish this, we first give every villain in the same scene as the hero an
’active’ flag (see figure 4). This is followed by a while loop, which loops as
long as there is a villain in the world which has the ’active’ flag set. In this
loop, another ’choice’ statement allows an active villain to move or attack.
Upon this move or attack, the villain loses its ’active’ flag, identifying that
the villain has already moved in this time slice. Unlike when the hero moves
or attacks, there is no need for extra statements after the villain moves or
attacks. This is because the villain can’t pick up an item, can’t activate a
trap nor use a door. If the hero dies after an attack of a villain, the outer
while loop will immediately stop, ending the simulation. Once every villain
has moved, the inner while loop ends and a new iteration of the outer while
loop, and thus a new time slice, begins.

8

1 whi le (i sNotF in i shed) {
cho i c e {Hero .moveDown ;

3 t ry Hero . takeGoal ;
t ry Hero . takeKey ;

5 t ry Hero . takeWeapon ;
t ry Hero . act ivateTrap ;

7 t ry Hero . useDoor ;}
or {Hero . moveLeft ;

9 t ry Hero . takeGoal ;
t ry Hero . takeKey ;

11 t ry Hero . takeWeapon ;
t ry Hero . act ivateTrap ;

13 t ry Hero . useDoor ;}
or {Hero . moveRight ;

15 t ry Hero . takeGoal ;
t ry Hero . takeKey ;

17 t ry Hero . takeWeapon ;
t ry Hero . act ivateTrap ;

19 t ry Hero . useDoor ;}
or {Hero .moveUp ;

21 t ry Hero . takeGoal ;
t ry Hero . takeKey ;

23 t ry Hero . takeWeapon ;
t ry Hero . act ivateTrap ;

25 t ry Hero . useDoor ;}
or {Hero . attackUp ;

27 t ry V i l l a i n . d i e ;}
or {Hero . attackDown ;

29 t ry V i l l a i n . d i e ;}
or {Hero . a t t a ckLe f t ;

31 t ry V i l l a i n . d i e ;}
or {Hero . attackRight ;

33 t ry V i l l a i n . d i e ;}

35 t ry V i l l a i n . a c t i v a t e ;
whi l e (i sAc t i v e) {

37 cho i c e V i l l a i n .moveDown ;
or V i l l a i n . moveLeft ;

39 or V i l l a i n . moveRight ;
or V i l l a i n .moveUp ;

41 or V i l l a i n . attackUp ;
or V i l l a i n . attackDown ;

43 or V i l l a i n . a t t a ckLe f t ;
or V i l l a i n . attackRight ;

45 }
}

Figure 6: RPGame control program

9

4. Analysis

GROOVE has the ability to perform analysis on its models. More specif-
ically, it can perform state space exploration. The simulator will attempt
to generate the full state space of a given model. This entails recursively
computing and applying all enabled graph transformation rules at each state
[4].

Analysing a complete RPGame model and trying to understand its reach-
ability graph is not easy, nor very useful. Therefore we will look at the reach-
ability graph of a small, simple RPGame model. Then we will add different
objects to the model and observe the effect it has on the graph. This allows
us to gain a deeper understanding of which part of the RPGame influences
which part of the reachability graph.

We start with a very simple model: one scene consisting of a three by
three grid of tiles (thus 9 tiles in total), with the hero standing on the upper
left tile and one goal located on the bottom right tile. The reachability graph
generated by GROOVE is shown in figure 7.

Figure 7: State space of simple RPGame model

10

The state space generated by GROOVE (figure 7) is not what we would
expect. Because there are nine tiles and one hero, we would expect nine
states: one for each possible position of the hero. However, GROOVE gen-
erates two states for each possible hero position. This is because of the way
GROOVE implements state exploration. Starting from the initial state, it
will generate a state for the result model of each applicable rule. Follow-
ing our control program, this means GROOVE will check the end condition,
which is the loop-condition, after every iteration of the loop. Even though
applying the rule that checks the end condition does not change the model,
GROOVE considers it as a new state. If we keep this in mind, the generated
state space does conform to what we expected. We also notice that the sim-
ulation ends after applying the ’takeGoal’ rule in the bottom right corner.
This, together with the constant check of the loop-condition, proves that our
control program works for this simple example.

If we add an obstacle to one of the tiles and recalculate the reachability
graph, the state with the same position as the obstacle is no longer present.
This is similar to what would happen if we removed the tile, because no
character can stand on a tile with an obstacle. We have already seen that
every tile reachable by the hero translate to a state in the reachability graph.
Therefore it makes sense that adding an obstacle to a tile is the same as not
having the tile, as it is no longer reachable.

Adding an item to one of the tiles has a greater inpact on the state space.
Figure 8 shows the generated reachability graph when we add a weapon to
the upper right corner of our simple RPGame model. The entire reachability
graph from our original game (figure 7) is duplicated and the two grids are
connected in the upper right corner with a ’takeWeapon’ edge. The reasoning
behind this is that for every position of the hero there are two possible states
of the RPGame: one where there is a weapon in the upper right corner and
one where there isn’t. The hero starts in the state where the weapon is
present and he can move between the nine tiles resulting in the original grid
in the reachability graph. As soon as the hero moves onto the tile containing
the weapon, he is forced (by the control program) to pick it up, changing the
state to one where the weapon is absent. The hero is free to move between
the nine tiles from this position resulting in the second grid in the reachability
graph.

11

Figure 8: Effect of an item on the state space.

More grids are generated when more items are added. However, adding
one item does not add one grid. Adding an item duplicates the current
reachability graph. Thus adding another item to the previous example leads
to four grids. If we consider that each item is either on a tile or picked up, we
get this general rule: ’if there are n items, there are 2n−1 grids’. We subtract
one from n because there must be at least one goal, if we consider the goals
as items. Let t be the amount of reachable tiles in the model, then we can
say that the amount of states in the reachability graph is 2n−1t (for models
containing no traps, no doors and no villains).

12

If we add a new scene and connect it with the original scene using two
doors, it has the same effect on the reachability graph as when we would
connect the tiles containing the doors. The amount of reachable tiles sim-
ply increases, expanding our original grid with the tiles from the new scene.
Adding a key that unlocks the door changes the reachability graph according
to the established rules. There is a state for every reachable tile before the
key is picked up. When the key is picked up, the hero moves to a new state
from which it can move again between tiles. Now, however, the amount of
reachable tiles has increased because the door is unlocked. Thus, before the
key is picked up, we have the original grid. Then this is duplicated because
we added the key (which is an item) and this duplication is extended with
all reachable tiles that were previously blocked by the locked door.

Adding a trap has a similar effect to adding an item. Standing on the
trap decreases the hero’s health value, changing the state and therefore du-
plicating the grid. The trap is not removed after it is triggered. Therefore
the hero can activate it again, duplicating the grid again. It can duplicate
the grid as long as the hero has health greater than zero. If n equals the
hero’s health divided by the trap’s damage, then adding the trap causes n
duplicates of the original grid. If the hero moves onto the trap in the last
duplication of the grid, his health becomes zero and the simulation stops
because the end condition is no longer satisfied.

Lastly, we take a look at an RPGame with a villain. Figure 9 shows the
first few states of the reachability graph generated when we add a villain
to the bottom right corner of our original model. It is clear that this no
longer represent the reachable tiles, instead it is a tree-like structure. We
can explain this with the following reasoning: in the initial model, which is
the root of the tree, the hero can choose between a few different moves. Each
of these possible moves results in new model, each represented by a child of
the root in the tree. In any of these new models, the villain can choose a
move, resulting in a new level of child nodes in the tree. After this, the hero
can choose again, and then the villain and so on. We get a decision tree.
This decision tree, or search tree, is the same tree which would be used by
an artificial intelligent agent. Such agent would generate this tree in order
to run a search algorithm like A* or minimax [5].

13

Figure 9: State space of RPGame with one hero and one villain.

Note that it is possible to reach the same state using different paths of the
decision tree. For example, moving the hero down and up when the villain
moves left results in the same state as moving the hero right and left when
the villain moves left (see figure 9).

5. Conclusion

The use-case in this paper shows us that it is easy to implement a rel-
atively complex formalism in GROOVE. We have seen how we can use the
many features provided by GROOVE to solve the different problems we en-
countered while modelling in an elegant way. Above that, GROOVE provides
a tool for in-depth analysis of these models which allowed us to gain a better
understanding of our RPGame formalism.

14

References

[1] M. de Mol, A. Rensink, E. Zambon, Groove website, about,
http://groove.cs.utwente.nl/about/ (2014).

[2] A. H. Ghamarian, M. de Mol, A. Rensink, E. Zambon, M. Zimakova,
Modelling and analysis using groove, International Journal on Software
Tools for Technology Transfer (STTT).
URL http://doc.utwente.nl/77423/

[3] H. K. Arend Rensink, Iovka Boneva, T. Staijen, Groove user’s manual,
groove website (2012).

[4] A. Rensink, The groove simulator: A tool for state space generation, in:
J. Pfaltz, M. Nagl, B. Bohlen (Eds.), Applications of Graph Transforma-
tions with Industrial Relevance, Vol. 3062 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2004, pp. 479–485. doi:10.1007/978-
3-540-25959-6 40.
URL http://dx.doi.org/10.1007/978-3-540-25959-6 40

[5] S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd
Edition, Pearson Education, 2003.

15

