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Abstract

We propose a set of model transformations in AToMPM that transform any
AToMPM transformation system(abstract syntax, model instances, MoTiF
transformation rules and rule scheduling) to its equivalent representation in
Groove. This enables the use of Groove’s model checking and state space
generation tool-set.
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1. Introduction

AToMPM is a tool for multi-paradigm modelling, and excels at creat-
ing visual domain-specific language modelling environments. Specifying the
operational semantics of such a language can be done with graph transforma-
tion systems(GTS for short) in the MoTiF language, which is also modelled
in AToMPM. It is however not built for analysis of these semantics, and thus
checking if certain unwanted conditions cannot occur during simulation is a
hard if not impossible task. Groove(Ghamarian et al., 2012) is a tool that
specializes in generating labeled transition systems(LTS for short) of GTS’s
and performing model checking on them. This paper is structured as follows:
Section 2 compares both tools’ representations of (meta)models, transforma-
tion rules and rule scheduling. Section 3 details our solution and Section 4
gives an overview of possible future work. Section 5 concludes.
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2. Comparison of AToMPM and Groove functionality

In the following subsections we’ll go over each part of a model and
its transformation system and look at the corresponding representations in
AToMPM and Groove. We’ll use a simplified version of an RPGame formal-
ism as our example.

2.1. Meta-modelling for visual language engineering

Both tools have a way of describing the language the instance models
are defined in. The meta-modelling capabilities of AToMPM, being a meta-
modelling tool, are more elaborate by a large extent, but are mostly equiva-
lent with those of Groove for our purposes(visual languages).

2.1.1. AToMPM

Modelling a visual language in AToMPM is done through a combination
of the specification of the abstract syntax in the Class Diagram formalism
and a concrete syntax in the ConcreteSyntax formalism. The latter makes
it possible to have a truly visual syntax by defining the look of every class
and association defined in the abstract syntax. Cardinalities can be defined
and will be checked when adding a new edge while constructing an instance
model. Arbitrary constraints can also be expressed in javascript code. An
example metamodel for RPGame is given in Fig.1.

Figure 1: AToMPM metamodel

2.1.2. Groove

Groove has a notion of type graphs, which define what types of nodes
are allowed and what edges can exist between them. It is roughly equiv-
alent with a class diagram, except that the attributes of nodes can’t be
arbitrary types(the only types defined in Groove are integers, reals, booleans
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and strings). It is possible to define cardinalities on these edges, and it is
impossible to save any model with invalid ones. The only other constraint
that can be checked while constructing a model instance in Groove is the
occurrence of cyclical containment edges. The equivalent Groove type graph
for the RPGame meta-model is given in Fig.2.

Figure 2: Groove metamodel

2.2. Instance models

Instance models are the start graphs(initial state of the system) the trans-
formations work on and from which the LTS graph will be constructed.

2.2.1. AToMPM

In AToMPM instance models are instances of their respective meta-model.
They are constructed using the defined concrete syntax and are DSL-specific.
An example instance model is given in Fig.3.

Figure 3: AToMPM model instance
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2.2.2. Groove

Groove’s state graphs are equivalent to AToMPM instance models, but
they lack the concrete visual syntax that makes AToMPM modelling modeller-
friendly. The example state graph is given in Fig.4.

Figure 4: Groove model instance

2.3. Transformation rules

Transformations are the core of all GTSs and define, together with rule
scheduling, the operational semantics of the DSL. Graph transformations
consist of a left-hand side(LHS) that defines a pattern to match in the host
graph, one or more negative application conditions(NAC) defining patterns
that should not be matched and a right-hand side(RHS) defining what the
LHS should be replaced with after the transformation. The example trans-
formation rule used here moves the Player character from one tile to the tile
below it, given that there is not already another occupant.

2.3.1. AToMPM

Graph transformation modelling in AToMPM is done with MoTiF(Syriani
and Vangheluwe, 2013), using a pattern metamodel generated from the ab-
stract and concrete syntax of a DSL. In MoTiF, the LHS, NACs and RHS
are separate and linked through node and edge id’s. Pivots(global names as-
sociated with a node) can be used to select certain specific nodes in the host
graph, instead of matching any node with the same type. It is also possible
to a condition on the matching of the LHS and NACs with inserted python
code. Actions that change attributes of model elements can be written in
the RHS using python as well. The example MoTiF transformation rule is
given in Fig.5.
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Figure 5: AToMPM transformation rule

2.3.2. Groove

In contrast to MoTiF, Groove uses a combined notation for LHS,NACs
and RHS. The difference between elements of these three components is
shown through visual queues. Groove has the notion of rule parameters,
which are equivalent with MoTiF pivots. Groove transformations are more
powerful than MoTiF transformations because of the ability to use existen-
tial qualifiers for nested rules and regular expressions for edge traversal. The
latter can be emulated in MoTiF through python code manually travers-
ing the instance graph, while the former is impossible to express. On the
other hand, because of the arbitrary python code that can occur in MoTiF,
there is another class of transformations that are impossible to express in
Groove. Most occurrences of condition and action code can be expressed
with Groove’s product nodes, which can perform any operation on the basic
types available. The example Groove transformation rule is given in Fig.6.

Figure 6: Groove transformation rule
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2.4. Rule scheduling

Using transformations without a way of defining in what order they occur
is not very powerful. Rule scheduling languages solve this. Although it
is possible to emulate some form of scheduling inside the transformations
themselves by adding extra information to the model, these languages offer
a clear and concise solution.

2.4.1. AToMPM

MoTiF uses a graphical scheduling language consisting of rule blocks and
success/failure edges between them. When a block succeeds in matching and
executing its transformation(s), the success edge is followed to get the next
rule block to be executed, otherwise the failure edge is followed. An example
schedule is given in Fig.7. There are several types of scheduling blocks, each
with their own semantics. These are explained in detail in (Syriani, 2011, p.
172). What follows is a quick summary:

1. Atomic rules

ARule Executes a rule once
QRule Checks if there is a match in the host graph.
FRule Executes a rule for all matches in the host graph
SRule Executes a rule as long as there are matches
CRule Starts execution of another schedule, allows for hierarchical rule

scheduling

2. Composite rules

BRule Randomly executes one of its matching sub-rules.
LRule Loops over all matches of the base rule and executes the loop rule

with the match of the base rule as implicit pivots.

2.4.2. Groove

Groove has two ways of explicit rule scheduling: rule priorities and control
programs. A control program is specified in a simple imperative language,
with rule applications as the basic syntactic blocks. Since it is an imperative
language without recursion, this language is less powerful than the graphical
control language of MoTiF. It does offer conditional looping, choice and
simple function calls, which makes it able to emulate all but FRules and
LRules.
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Figure 7: MoTiF schedule
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3. Implementation overview

Our implementation heavily relies on AToMPM’s metaDepth(De Lara
and Guerra, 2010) exporter and metaDepth’s code generation capabilities.
We have created 4 EGL generators(main m,main mm,main gt and main r)
and a script that simplifies running them, called run.sh. This script takes
two parameters: the name of the mdepth file you are converting, and the
name of the converter. Both names should be given without file extensions.

3.1. Meta-models

Meta-models can be converted to Groove type graphs by using the model
export and running the main mm generator. The meta-model, when ex-
ported as a model, should be exported with an ”MM” suffix, to avoid a
name clash with the export as meta-model. Since in AToMPM, edges can
have attributes, whereas they cannot in Groove, we decided to transform
AToMPM edges to Groove nodes, with In and Out edges to specify in which
direction the edge goes.

A note on attributes: currently, only Groove-compatible attributes are
supported(integers, booleans, strings and real numbers). Other attributes
get ignored in the transformation process.

A final implementation detail is that we make all types inherit from an
imported ModelElement type, to make pivots(3.3.2) possible.

3.2. Models

Models, just like meta-models, have a one-to-one mapping to Groove,
which makes this conversion step consist of exporting the meta-model as a
meta-model, exporting the model and running the main m generator.

3.3. Transformations

Since there is no simple one-to-one mapping of transformations in AToMPM
to rules in Groove, we implemented a Groove formalism in AToMPM, to
which we transform the pattern contents of the transformation rule. This
can then be exported to metaDepth and converted using the main r genera-
tor.
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3.3.1. AToMPM pattern meta-models

Pattern contents in AToMPM are instances of a pattern meta-model,
which is generated from the abstract and concrete syntax of the DSL that is
being transformed. This process can be done(and should be to be able to use
this framework) through the RAMification transformations. Generating a
pattern meta-meta-model is possible, when treating the pattern meta-model
and its concrete syntax in the same way, which enables higher-order transfor-
mations. There is, however, no generic pattern meta-meta-model, to which
all pattern meta-models conform. Thus, it is not possible to write higher-
order transformations that transform any given pattern.

We solved this problem by creating this meta-model ourselves, in the form
of the GenericTransform formalism. The elements of this formalism capture
all relevant information of pattern instances. We then implemented a set of
transformations that transform pattern nodes, edges and self-edges to their
equivalent in the GenericTransform formalism.

Since these transformations are meta-model-specific, we created a set of
EGL generators that can be started with the main gt generator which runs
on the meta-model(exported as model). These generate all necessary rules
and two scheduling models. One that transforms to the GenericTransform
formalism and one that chains the first with the Groove fromGT transforma-
tion. These generated transformations should be placed in a genericTrans-
form subfolder of the formalism they belong to. Running the conversion on
a transformation rule can be started with the start button on the Groove
toolbar. The use of this button is required(see Section 3.4). When the con-
version has finished you can export it to metaDepth using the export button
on the same toolbar. This automatically unloads all non-Groove formalisms
and runs the export to metaDepth.

3.3.2. Pivots

In AToMPM, pivots match only the element they’re bonded with or are
ignored when not already specified. To implement this, we made a Pivot type
in Groove(Fig. 8), which then get checked or created in rules that specify
input/output pivots. The example rule(Fig. 9) has an input pivot called
’hero’ and an output pivot called ’eaten’ on the Hero element.

3.3.3. Matching algorithm differences

The matching algorithms used in AToMPM and Groove work in subtly
different ways. The two major differences are node merging and subtype
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Figure 8: Pivot typegraph

matching. Node merging is a phenomenon in Groove where, if there are two
nodes in a LHS of compatible types, they can represent the same node in
the state graph after matching. Since this doesn’t happen in AToMPM, it
should also not happen in our generated rules. To disable this merging, we
added inequality edges between all elements of the same pattern that could
possibly merge. Subtype matching is optional in AToMPM transformations.

3.3.4. Queries

If a rule is meant to be used as a QRule, and thus has no RHS, we prevent
all elements from becoming deleter nodes. If you need a query version of a
rule, you need to save it as a separate rule lacking the RHS and use that rule
in the QRule query attribute.

3.3.5. NAC

In AToMPM, a NAC works the same way as a LHS during matching,
but if a NAC matches, the rule can’t be applied. In Groove, each sub-graph
of connected ’not:’-qualified nodes represents a single NAC. This presents
a problem when there are non-connected nodes in an AToMPM NAC, since
they wouldn’t need to be matched together to cause a failed match in Groove
when performing a naive transformation. Luckily, because of our disabling
of node merging(3.3.3), all elements of a NAC are connected through at least
the inequality edges, which makes them all match together as a single NAC.
Links to LHS elements are handled through merger edges, which enforce two
rule nodes to represent the same node in the state graph.

3.3.6. Condition and Action code

In AToMPM, it is possible to execute arbitrary python code to set con-
straints on values or calculate the new values of attributes. Groove rules can
also manipulate attributes, but only in a more restricted way through prod-
uct nodes(which support all basic operations on Groove’s data types). Our
solution includes support for most of these operations and data types. We
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Figure 9: Example rule with pivots

emulate the environment the condition/action code runs in and insert our
own version of the getAttr and setAttr methods. Our version of getAttr re-
turns a custom object that will start building an expression tree when there
are expressions applied to it. We then recurse down that tree and build
the product node hierarchy. This approach sadly fails to work with boolean
negation because of the way the ’ !’ operator in python works. If there is any
control flow logic that depends on values of certain attributes, the conversion
will also fail, since these are cases that are almost always incompatible with
the way Groove rules work.

3.4. Rule scheduling

Control programs in Groove aren’t as powerful as the graph control lan-
guage used by MoTiF. To make MoTiF scheduling possible in Groove, we
opted to add the transformation schedule to the state graph, and implement
the scheduling semantics in a control program(Fig. 10). Each transforma-
tion rule of the system checks whether a rule block with its own name is
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1 MoTif.start;

2 while(true) {

3 try MoTif.BRule; //Expand BRules

4 try {

5 rules.any;

6 try MoTif.SRuleSuccess;

7 }

8 //Unroll until we can follow a success/fail edge.

9 until(MoTif.success|MoTif.recurseSuccess|MoTif.fail|MoTif.recurseFail) {

10 node current;

11 MoTif.unroll(out current)|MoTif.unrollRecurse(out current);

12 //Add recursive flag on BSRules

13 try MoTif.isBSRule(current);

14 }

15 }

Figure 10: MoTiF control

active in addition to matching its LHS/NAC. Since it’s impossible to get the
current filename in a MoTiF transformation, we add a string Groove node
to the transformation when the Groove button is pressed before starting the
conversion. FRule blocks are modelled through an auxiliary rule using an
existential forall qualifier. This rule can be generated from an existing rule
model with the Groove forall transformation, which adds a top-level existen-
tial qualifier to the rule elements. BRule blocks are simply a choice between
multiple branches, we make sure all branches get the possibility to match and
Groove will explore them all(see MoTif.BRule). LRule blocks are impossi-
ble to emulate without analysis of both the base and loop rules, because we
would need to find which patterns in the base rule correspond to patterns in
the loop rule to know what nodes we need to have the selection mechanism
work on.

4. Future work

CRules are still unsupported because of time constraints, but we believe
that it is possible to implement within the current framework.

The condition/action code parser could be made more robust, take into
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account control flow(conditional testing may need the rule to be split into
multiple versions).

A lot more can be done to make this conversion more user-friendly, as
it now still consists of several switches between AToMPM and using the
command-line to run EGL exporters(after which you need to manually move
the files to the right locations).

5. Conclusion

We have given an overview of both AToMPM and Groove functionality
and compared them for the purposes of modelling transformation systems.
We conclude that while AToMPM excels at visual modelling, Groove is more
adept at performing model checking on the system. We then described a way
to convert AToMPM (meta-)models, transformations and rule scheduler to
their Groove equivalents. Model checking arbitrary constraints can then be
done by modelling a query that finds an acceptor/rejector state in AToMPM
as a query transformation, exporting this to Groove and using it as the
acceptor/rejector rule for Groove’s model checking tool-set.
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