
Causal Block Diagrams: Compiler to LaTeX and DEVS

Nicolas Demarbaix
University of Antwerp
Antwerp, Belgium

nicolas.demarbaix@student.uantwerpen.be

Abstract

In this report I present the results of my project for the course Model Driven Engineering. This project consists of
developing a Causal Block Diagram (CBD) to LaTeX and DEVS compiler. Using this compiler one can generate text
based documents (in LaTeX) that give a detailed description of the CBD model on one hand. On the other hand, one
can transform the CBD model into an equivalent DEVS model. This will allow us to use, for example, the PypDevs
simulation framework for DEVS to verify whether the model behaves correctly.

Keywords: Model Driven Engineering, Causal Block Diagrams, Compiler, LaTeX, DEVS

1. Introduction

During the course Model Driven Engineering many
di↵erent aspects of Modelling were discussed. Topics such
as Meta-Modelling, Concrete Visual Syntax, Semantics
and Transformations were brought to attention. In Mod-

elling of Software-Intensive Systems, a course coherent to
Model Driven Engineering, di↵erent Modelling Formalism
were presented. Using both the theoretical and practical
aspects of both courses, a Causal Block Diagram (CBD)
to LaTeX and DEVS compiler will be developed in
the light of a final project for the course Model Driven

Engineering.

Both aspects of this compiler will be developed us-
ing the AtomPM modelling tool. Both for LaTeX and
DEVS a certain transformation scheme will be provided.
This transformation scheme will be used to construct a
DEVS model in AtomPM on one hand, and an exporta-
tion mechanism for generating the LaTeX document on
the other hand.

1.1. Motivation

The reason(s) for developing a CBD to LaTeX/DEVS
compiler are the following. To start let us take a look
at the CBD to LaTeX part of this compiler. CBD
models are a good way to model for example a process
or a set of equations. It is however not always easy to
understand the model by simply looking at it. A textual
description of such a CBD model could overcome this
burden. By providing a CBD to LaTeX compiler, one
could easily retrieve information about the CBD such
as block definitions, interconnectivity of blocks, possible
algebraic loops in the model, etcetera.

One of the reasons why one might want to trans-
form a CBD model into a DEVS model is the ease of
using events in DEVS. Say for example that you want
to study the e↵ect of a certain input value to an entire
component of the CBD. This can easily be achieved in the
DEVS formalism by using external transitions and event
generation. Another advantage of transforming CBD into
DEVS is that one could verify the model by exporting the
DEVS model to PypDevs.

1.2. Concept

The general concept of the CBD compiler is the follow-
ing. The ’to LaTeX ’ aspect of the Compiler is to provide a
textual representation of the CBD model. In this textual
representation details such as block structure, connections
between blocks and functions/values of the blocks can be
included. Moreover, by using an intermediate language1,
the algebraic loops that could occur in a CBD model
might already be solved and a description of these loops
could also be added to the textual representation.

On the other hand we have the ’to DEVS ’ aspect of
the compiler. This aspect provides the means to construct
a DEVS model that is directly related to the CBD model.
The resulting DEVS model will consist of all di↵erent
elements of the DEVS formalism2. Using these elements
the main concept of this aspect will be to create an
Atomic DEVS element for each strong component in the
CBD model. The idea behind this concept is that in

1More information about the concept of this intermediate lan-
guage can be found in Sections 2 and 3.

2The elements of the formalism that are refered to are Atomic

DEVS, Coupled DEVS, Events, Internal Transitions, External Tran-
sitions and State Definitions

Preprint submitted to Model Driven Engineering December 18, 2014

order to work with algebraic loops, these loops should be
treated as a single element. More on this in Section 2
where I will discuss the theoretical background for this
compiler.

1.3. Structure

The structure of this reports is as follows. In Section 2,
a theoretical basis for this project is provided. In Section 3
I will discuss my design intentions for the compiler itself.
Lastly, in Section 5 I conclude on the project and will
present some possible Future Work.

Note that I do not yet include Section 4 in my structure
overview. This report is only a first version of my
project report and it consists of performing a problem
analysis and providing a design for the compiler. In the
next version of this report, I will include the necessary
implementation details. This next version will be ready
once the implementation is completed.

2. Theoretical Background

In this section I will give a brief overview of the theo-
retical background on which this project is based. I will
assume a decent knowledge about these topics such that
I do not need to go in too much detail, which would be
outside the scope of this report. I will start by presenting
the constructs that will be used to build an intermediate
language (see Section 3). Next I will present the mapping
between the CBD model and the DEVS model without go-
ing into details about design intentions. Next I will discuss
the issue of algebraic loops and how they will be solved.
Lastly I will take a quick look at an algorithm for dynam-
ically changing the rate of a block inside a CBD model.

2.1. Intermediate Language Constructs

The intermediate language that will be used when
transforming CBD models to either DEVS or LaTeX will
be a model of a dependency graph. This means that we
need to provide the proper algorithms to transform the
source CBD model into such a dependency graph. Why
such a model is used as intermediate language is discussed
in Section 3.

The algorithms that are used to construct the de-
pendency graph can be found in Appendix A. These
algorithms come directly from the course page for
Modelling of Software-Intensive Systems

3. The main
purpose of using these algorithms is that we can create a
dependency graph for the CBD model where:

• Blocks are represented by nodes where each node has
a marking. This way we can look for a ”root” node
from which we can start our simulation in DEVS for
example.

3http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/CBD/topsort.pdf
http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/CBD/strongcomp.pdf

• Strong components are already identified in order to
find an early solution to algebraic loops.

It is important to note that the exact ordering of the
nodes will be random as the ”root” node for the algorithm
is choosen at random. This is of course the case since we
are working with cyclic graphs which contain no single
root node. However this random ordering will only occur
in the Topological Sort algorithm as the algorithm for
finding the strong components of the dependency graph
should always return the same set of strong components.

Using the above algorithms, a depency graph model
is built from the CBD model which serves as an inter-
mediate language in the transformation scheme. The
mapping a CBD to a dependency graph results in the
following structural elements:

• Vertices : A node - which is a representation of a ver-
tex in the graph - contains a link to the corresponding
CBD block. Furthermore a node contains a marking
for this block based on the topological sort algorithm.
Lastly a node will contain a link to the strong com-
ponent to which it belongs.

• Edges: The edges in this dependency graph will be
directed and corresponds to the output-to-input links
between di↵erent blocks in the CBD model.

2.2. CBD to DEVS mapping

As can be found in the article about debugging parallel
DEVS by Van Mierlo et al. (2014), an Atomic DEVS model
M can be written as M =< X,S, Y, �

int

, �

ext

,�, ta >

4

where

1. X Input Set
2. S State Set
3. Y Output Set
4. �

int

: S ! S Internal Transition
5. �

ext

: QxX ! S External Transition
6. Q = {(s, e)|s 2 S, 0 e ta(s)}

total state, e is elapsed time
7. ta : S ! R

+
0,inf time advance function

8. � : S ! Y output function

Using this definition of Atomic DEVS we will now take
a look at how the CBD model will be mapped onto such a
DEVS. Note that each strong component will be mapped
onto a single Atomic DEVS. Each state of this Atomic
DEVS will thus represent a single block in the strong com-
ponent5.

4The transition type �
conf

is not included here even though it was
included in the article by Van Mierlo et al. (2014). These transitions,
also know as confluent transitions are used to decide which transition
(internal or external) is fired in case of a conflict. It has a default
setting in which the internal transition will be fired first. I will not
change this behaviour in my model.

5As can be seen later, when an algebraic loop occurs in the CBD
model, the blocks that belong to this loop will be treated as a single
block. So in case of an algebraic loop, a state in an Atomic DEVS
will actually represent multiple blocks of the CBD model

2

For each Atomic DEVS that is generated by the transfor-
mation we see that X = Y = {Signal} where Signal is an
event in our generated DEVS model that corresponds the
signals between transitions. Such a signal carries the value
that is outputted by a certain block in case of the original
CBD model and is used as input value for another block.
The state space S of the Atomic Devs will consist of all the
states that correspond to the blocks in the CBD diagram
that belong to the strong component which is transformed
in this specific Atomic DEVS.
The internal transitions of the Atomic DEVS will corre-
sponds to the links between the blocks of original strong
component to which the Atomic DEVS corresponds. They
will thus ”carry” the signal from one block in the strong
component to another.
The external transitions also corresponds to links between
blocks in the original CBD. However they do not corre-
sponds to links between blocks in the same strong com-
ponent, but they will corresponds to links between blocks
that belong to di↵erent strong components.
The total state of the Atomic DEVS will consist of the
output signal of each block represented by a state in the
Atomic DEVS at a certain point in time. This output sig-
nal will of course be based on the input signals at the same
given point in time.
The time advance function for each state will be based on
the rate of the corresponding block. The rate corresponds
(for example) to the number of steps that are taken each
second by the block. The time advance function might
change over time if the rate of the corresponding blocks
changes dynamically (see Section 2.4).
Lastly, the output function � is dependent on the links
between the blocks in the CBD. Only those states that
represent a block whose outgoing links arrive in another
block that does not belong to the same strong component
will generate events. These events are all of the type Signal
(see earlier).

2.3. Algebraic Loops

Algebraic loops correspond to cycles in the dependency
graph of the CBD model. In terms of CBD models an
algebraic loop occurs when the output of a certain block
is connected to its own input, either directly or indirectly.
The problem with these algebraic loops is that the output
result of the corresponding block(s) cannot be computed
explicitly. Or interpreted di↵erently, their output signals
cannot be determined based on the initial state of the
model.

There are many ways to solve such an algebraic loop.
To minimize the complexity that corresponds with these
loops, we will first try and determine whether the alge-
braic loop is linear. If so it can be solved using techniques
such as Guassian Elimination. If it is non-linear, more
advanced techniques are required.

To determine the linearity of the algebraic loop, we

base ourselves on the definition of linearity and the
structure of the blocks and the CBD model. From the
Encyclopedia of Math (2011) we include the following
definition for linear equations. Given a set of N variables
{x

i

|i 2 {0, . . . , N � 1}} and a set of known values
{a

i

, b} where i = 0, . . . , N � 1 an equation of the form
a1x1 + a2x2 + · · · + a

N�1xN�1 = b is always linear.
Otherwise interpreted we see that an equation is thus
linear if all variables in the equation are of first degree.
Also the multiplication of two or more unknowns (e.g.
z = xy) results in an equation being nonlinear.

Based on this definition, I will now present a list of
block combinations in a CBD model that can be classified
as nonlinear. In case these combinations occur, an error
message will be produced and any ongoing procedures will
end. In all other cases however, we classify the equations
as linear and the procedure can continue. The following
combinations of blocks in a CBD model yield non-linear
equations:

• The precense of a RootBlock always results in an
equation being non-linear, as it computes

p
x = x

1/2.
We see that the unknown x is not of first degree in
this case, so these equantions will be non-linear.

• The abscence of at least one ConstantBlock as input
for a ProductBlock. In case none of the inputs of the
ProductBlock are of type ConstantBlock, then we see
that the output signal ’z’ of the ProductBlock is calcu-
lated as z = x⇤y. We thus see that this ProductBlock
yields a non linear equation.

• An exception to this last rule is that instead of a Con-
stantBlock, the presence of an Integrator- or Deriva-
torBlock will also result in a linear equation. This
can be explained by the fact that these blocks have
an Initial Condition which is valid at the initial state
of the model. This Initial Condition must be defined
at time zero, therefor the output signal of these blocks
will also be known in the initial state.

Now let us propose a way of dealing with these algebraic
loops in case they are in fact linear6. A linear algebraic
loop can be written as a system of linear equations. For
example, the algebraic loop in Figure 1 can be written as
the following system of equations:

(
y = x� 3

x = 2 ⇤ y

An algebraic loop can thus be solved by constructing
such a system based on the cycle of blocks and by treat-
ing this system as a single block with multiple inputs and
outputs. Depending on which input is present, a certain
output can be generated. Or visa versa, if one wants to

6Remember, if an algebraic loop is non-linear, we decide to stop
the execution of the program

3

Figure 1: Example of a basic algebraic loop in CBD.

know a certain output value of the system we will need to
look at the di↵erent input values from which this output is
computed. To continue our previous example, if we trans-
form this algebraic loop into a single block, we would have
x, y as input and as output set. In the example above, as
there are no inputs except the ConstantBlocks, it can be
easily calculated that by solving the system of equations
the output signal for x will always be 6 and the output
signal for y will always be 3.

2.4. Dynamic Block Rate

In her research internship, Christis (2012-2013)
introduced the concept of Adaptive Derivator- and
IntegratorBlocks. By monitoring the error between
the calculated result (by the CBD) and the analyti-
cal solution, the rate (or step size) of these blocks is
adapted to ensure that the error can be reasonibly
minimized. By calculating two di↵erent derivative
approximations f most exact(x) = f(x)�f(x��)

�

and

f less exact(x) = f(x)�f(x�2�)
2� and calculating the error

as error = f most exact(x) - f less exact(x) one can make
an estimate of the deviation of the calculated result from
the analytical solution. If this deviation is too large (or
too small), the step size � is adapted such that the error
can be minimized.

This theoretical base can provide a good starting
point to look at the rate of the blocks during simulation.
If time allows I will extend this section with details on
how exactly this dynamic block rate change could be
designed.

3. Design

Now that we have provided a theoretical basis for the
implementation of this compiler it is time to look at its
design. I will start by giving some general design insights,
after which I will discuss both the LaTeX and DEVS as-
pects on more detail.

3.1. General Design

As mentioned earlier the CBD model will not directly
be transformed into a DEVS model/LaTeX file. Rather
we will first transform the CBD model to an intermediate
language. This intermediate language will be the represen-
tation of a Dependency Graph of the CBDmodel. The rea-
son I choose this design is that we can first solve both the
topological sort and strong component algorithm in this
Dependency Graph model. Furthermore, since we already
constructed the strong components, we can search for pos-
sible algebraic loops in the CBD. If this is the case we
can already transform these algebraic loops into a proper
structure as explained in Section 2.3.

3.2. Design of the LaTeX Component

Figure 2: Structure of the CBD to LaTeX transformation scheme

Figure 2 shows the general structure of the transfor-
mation scheme from CBD models to LaTeX file. A CBD
model is first transformed into a Dependency Graph
Model (DP Model) as was mentioned earlier. The DP
Model is then in turn exported to a file. Note that I did
not yet write LaTeX file. The exportation functionality
will not immediately generate a LaTeX file. It will how-
ever generate a MetaDepth file containing the di↵erent
constructs that will be present in the resulting LaTeX
file. Using this metaDepth model file we will generate the
actual LaTeX file using the Epsilon Generation Language

7.

The result of this operation will be something simi-
lar to the following:

Listing 1: LaTeX output for the Algebraic Loop example

\documentclass { a r t i c l e }
\begin {document}

\ s e c t i o n {Blocks }
% Informat ion about the b locks and
% th e i r l i n k s
\begin { tabu la r }{ | c | c | c | c | }
\ h l i n e

7http://eclipse.org/epsilon/doc/egl/

4

Name & Type & Inputs & Outputs\\
\ h l i n e
\ h l i n e
b1 & ProductBlock & (b2 , b3) & (b2)\\
\ h l i n e
b2 & AddBlock & (b1 , b4) & (b1)\\
\ h l i n e
b3 & ConstantBlock & () & (b1)\\
\ h l i n e
b3 & ConstantBlock & () & (b2)\\
\ h l i n e
\end{ tabu la r }

\ s e c t i o n {Dependency Graph}
% I f p o s s i b l e t h i s w i l l be done v i s u a l l y
% with the package Tikz ,
% otherw i s e t ex tua l
\ subs e c t i on {Strong Components}

\ subs e c t i on {Algebra i c Loops}
%Informat ion about a l g e b r a i c l oops
% i s i n s t e r e d here
\end{document}

The resulting LaTeX file in Listing 1 is of course an
example and is not written in stone. It is to early to state
which will be displayed exactly and in which order, but
this example should already give a general idea.

3.3. Design of the DEVS Component

Figure 3: Structure of the CBD to DEVS transformation scheme

Figure 3 shows the general structure of the trans-
formation scheme from CBD models to DEVS models.
As can be seen in this Figure, the transformation from
CBD to DEVS operates for the most part (the first step)
identically to the transformation from CBD to LaTeX
introduced in Section 3.2. The most important di↵erence
is of course that we will not export the Dependency
Graph to some metaDepth model, but perform yet
another transformation in AtomPM from the DP model
to a DEVS model. This last transformation will involve
mapping the di↵erent strong components to Atomic
DEVS and providing other elements such as a Coupled

DEVS which contains instances of the Atomic DEVS.
Another element that should be created is the event
Signal used for passing signals (read values on links) from
one Atomic DEVS to the other.

The last part that should be provided is a time ad-
vance function that specifies after how much time such
a signal should be generated. This will of course de-
pend both on input signals as well as the rate of the
corresponding block(s). The details on how this will all
work will become clear once I will be able to discuss the
implementation.

Now I will provide a description of the DEVS model
that will result from the Algebraic Loop example in
Section 2.3.
The resulting DEVS model will only contain a single
Atomic DEVS as their is a single strong component in
the dependency graph of the CBD model. This Atomic
DEVS will have two output ports, ”X” and ”Y” (one
for each output signal). As we can already - and easily
- solve the algebraic loop in this strong component,
the Atomic DEVS will only contain a single state that
represents the system of linear equations that corresponds
to the algebraic loop. Since we have shown in Section 2.3
that X will always equal 6 and Y will always equal 3,
we see that this single state will generate Signal events
for both output ports (one containing the value 6 for
the output port ”X”, and one containing 3 for the
output port ”Y”). There are no external transitions
needed (as there is only a single Atomic DEVS). There
is however a single internal transition which will go
from this one state to itself. This way, we keep generat-
ing events (every time the time advance constraint is met).

This easy example shows the basic scheme for the
CBD to DEVS transformation. Of course the eventual
compiler will generate much more complex DEVS models.
But this example su�ces for now.

4. Implementation

The contens of this section will be provided once the
implementation is finished.

5. Conclusion

No real conclusion can yet be formed as we have not yet
implemented the compiler itself and thus have not run a
series of experiments. We can however already state that
by first transforming the CBD model to an intermediate
Dependency Graph model we will be able to extract ad-
ditional information from the CBD such as strong compo-
nents and algebraic loops. By already finding a solution for
the algebraic loops, the resulting LaTeX file will contain

5

additional, interesting information. Moreover, the result-
ing DEVS model will be significantly easier, as the number
of states and transitions will be reduced.

References

Bolduc, J.S., Vangheluwe, H., 2002. Expressing ode models as devs:
Quantization approaches. quantum 2, 1.

Bolduc, J.S., Vangheluwe, H., 2003. Mapping odes to devs: Adap-
tive quantization, in: Summer Computer Simulation Conference,
Society for Computer Simulation International; 1998. pp. 401–407.

Christis, N., 2012-2013. Research internship 2: Hybrid systems.
EncyclopediaOfMath, 2011. Linear equation. URL:

www.encyclopediaofmath.org.
de Lara Jaramillo, J., Vangheluwe, H., Moreno, M.A., 2003. Using

meta-modelling and graph grammars to create modelling environ-
ments. Electronic Notes in Theoretical Computer Science 72, 36
– 50.

Posse, E., Lara, J.D., Vangheluwe, H., 2002. Processing causal block
diagrams with graph-grammars in atom.

Van Mierlo, S., Van Tendeloo, Y., Mustafiz, S., Barroca, B., 2014.
Debugging parallel devs.

Vangheluwe, H., 2012. Model transformation.
Zeigler, B.P., Praehofer, H., Kim, T.G., 2000. Theory of modeling

and simulation: integrating discrete event and continuous complex
dynamic systems. Academic press.

6

Appendix A. DepGraph algorithms

Listing 2: Topological Sort

topSor t () and d f s L a b e l l i n g () both r e f e r

to g l o b a l counter dfsCounter which w i l l be

incremented during the t o p o l o g i c a l s o r t .

I t w i l l be used to as s i gn an orderNumber to

each node in the graph .

dfsCounter = 1

topSor t () performs a t o p o l o g i c a l s o r t on

a d i r ec t ed , p o s s i b l y c y c l i c graph .

def topSort (graph) :

Mark a l l nodes in the graph as un�v i s i t e d f o r node in graph :

node . v i s i t e d = FALSE
Some topSor t a l go r i t hms s t a r t from a ” root ” node

(de f ined as a node wi th in�degree = 0) .

As we need to use topSor t () on c y c l i c graphs (in our strongComp

algor i thm) , t h e r e may not e x i s t such a ” roo t ” node .

We w i l l keep s t a r t i n g a d f s L a b e l l i n g () from any node in

the graph u n t i l a l l nodes have been v i s i t e d .

for node in graph :
i f not node . v i s i t e d :

d f sLab e l l i n g (node)

d f sL a b e l l i n g () does a depth� f i r s t t r a v e r s a l o f a p o s s i b l y

c y c l i c d i r e c t e d graph . By marking nodes v i s i t e d upon f i r s t

encounter , we avoid i n f i n i t e l oop ing .

def d f sLab e l l i n g (node , graph) :
i f the node has a l r eady been v i s i t e d , the recur s ion s t op s here

i f not node . v i s i t e d :
avoid i n f i n i t e l oops

node . v i s i t e d = TRUE
v i s i t a l l ne i gbours f i r s t (depth f i r s t)

for neigbour in node . out ne igbour s :
d f sLab e l l i n g (neighbour , graph)

l a b e l the node wi th the counter and

sub s e quen t l y increment i t

node . orderNumber = dfsCounter
dfsCounter += 1

Listing 3: Strong Components

Produce a l i s t o f s t rong components .

Strong components are g iven as l i s t s o f nodes .

I f a node i s not in a cyc l e , i t w i l l be in a s t rong

component wi th on ly i t s e l f as a member .

def strongComp (graph) :
Do a t o p o l o g i c a l order ing o f nodes in the graph

topSort (graph)

note how the order ing in format ion i s not l o s t

in subsequent p roce s s ing and w i l l be used during

Time S l i c i n g s imu la t i on .

Produce a new graph wi th a l l edges

reversed . r ev graph = r ev e r s e edg e s (graph)

7

Sta r t wi th an empty l i s t o f s t rong components

strong components = []

Mark a l l nodes as not v i s i t e d

s e t t i n g the s t a g e f o r some form of d f s o f rev graph

for node in rev graph :
node . v i s i t e d = FALSE

As s t rong components are d i s cove r ed and added to the

strong components l i s t , they w i l l be removed from rev graph .

The a l gor i thm terminates when rev graph i s reduced to empty .

while rev graph != empty :
Sta r t from the h i g h e s t numbered node in rev graph

(the numbering i s due to the ” forward” t o p o l o g i c a l s o r t

on graph

s t a r t node = highest orderNumber (rev graph)

Do a depth f i r s t search on rev graph s t a r t i n g from

star t node , c o l l e c t i n g a l l nodes v i s i t e d .

This c o l l e c t i o n (a l i s t) w i l l be a s t rong component .

The d f sC o l l e c t () i s very s im i l a r to strongComp () .

I t a l s o marks nodes as v i s i t e d to avoid i n f i n i t e l oops .

Unl ike strongComp () , i t on ly c o l l e c t s nodes and does not number

them .

component = d f sCo l l e c t (s ta r t node , rev graph)

Add the found s t rong component to the l i s t o f s t rong components .

strong components . append (component)

Remove the i d e n t i f i e d s t rong component (which may , in the l im i t ,

con s i s t o f a s i n g l e node) .

rev graph . remove (component)

8

