
RPG modelling langage engineering with Web GME

Raha Naseri

Department of Computer science, University of Antwerp

Abstract

The design of complex systems by using visual formalism is always a good
idea. By creating and using domain-specific modeling language(DSML), we
can build the systems in modeling tools. These tools facilitate the analyz-
ing, simulating and code generation for the system. In this report I de-
scribe the WebGME tool and discuss its suitability for modeling role playing
games(RPG).

Keywords: WebGME, metamodel, domain specific modeling language

1. Introduction

WebGME is an open source cloud-based collaborative modeling tool which
allows the user to design a Domain-specific modeling language and create
domain-specific models for it. This software is hosted on Amazon cloud and
is used for modeling complex science and engineering systems. The most
outstanding characteristics of webGME are extensibility, scalability, model
versioning and prototypical inheritance. WebGME is a platform independent
and browser-based tool which does not require installation. The predecessor
of the tool is GME which was released by the same research group but some
of its limitations led them to create WebGME. Some of GME limitations
were that the tool is not scalable and capable to support only small systems.
Moreover, since it is not web-based, it only supports limited platforms and
hence it is not possible for the users to collaborate simultaneously. The rest
of the paper is structured as follows: in section 2 a brief overview of Web
GME is provided, in section 3 different features of the user interface of the
tool are described, in section 4 I mention some technical issues of tool and

Email address: raha.naseri@student.uantwerpen.be (Raha Naseri)

Preprint submitted to ReadingReport December 18, 2014



finally I discuss my future plans related to modeling of the RPG game by
using this tool.

2. WebGME overview

In this section I describe some characteristics of the tool. There are
some interesting characteristics in webGME like version control, crosscuts
and multi paradigm modeling that are briefly discussed in this section.

. Version control:
In webGME the models version is controlled according to Maroti Et al. In
webGME ”Version control is implemented by treating almost all objects in
the database read only, and creating new versions of models (and updating
references) whenever they are modified.the client does not need to download
all models from the database, only a tiny fraction that are currently visible
to the user, so it can work with large databases that would not even fit in
the memory of the client.”[2]
With version control users can recall and recover any previous version of
the project. This can be done in the GUI of webGME by using the option
project repository in the main toolbar. This option will pop up a window
where shows the previous versions of the project. The tool allows to load
any of these versions or create a new branch in the repository for them.
Finally, Version control is mostly useful in the case of teamworking. Figure
1 demonstrates a snapshot of the project’s repository history.

. Crosscut and multi-paradigm modeling:
By creating a crosscut user can see multiple models in a shared win-

dow and add or edit the relations between them. Suppose that we want to
intermix multiple DSMLs and make a new DSML out of them which also
supports the relations between them. This is possible in webGME and for
this purpose we have to import the desired DSMLs or a part of them in a
new project, create the new model from all the imported DSMLs and specify
the relations between them in the new project. In order to visualize and edit
these relations we have to create a crosscut.

3. User Interface

In order to get familiar with the GUI environment of the tool i went
through the documentation of the tool [4] and some tutorials [5],[6]. Webgme

2



Figure 1: Repository histrory

modeling has 2 sections, the model and the metamodel which are connected
to each other by the protypical inheritance. Figure 2 demonstrates an exam-
ple in the GUI of the tool.

There is a main toolbar on the top of the page. By using this toolbar we
can create, import, export projects, edit the shape or color of the elements
appearance and make a project read only etc. On the top right side of the
page is the object browser window showing composition hierarchy rooted
by Root and inheritance hierarchy rooted by FCO(first class object). This
window is the core of the tool since it shows the tree structure of the system.
On the top left side of the page there is the mode selector panel. When
we split the tools main sheet to 2 parts, there is 2 mode selector panels for
each of the sheets. Below this panel there is the part browser which contains
parts of the model language which can be dragged and dropped into the
sheet and actually this is the way of adding elements to the model. We can
also drag and drop elements from the composition hierarchy and by means
of the relation arrows existing in the main toolbar we can define the relations

3



Figure 2: WebGME GUI

and connections between them. Moreover we can add or edit the attributes,
constraints and aspects of every object in the class diagram. The down right
side of the page is the Property editor. Here, we can edit the properties of
the elements in Meta or Composition. In order to change the appearance of
the model elements we can use decorator and SVGIcon. After completing
the project, we can export it from the tool in a .json file format.

4. The schedule

Initially by experimenting with webGME, I came across some issues which
show that the tool is not yet completed. Some of these issues are the follow-
ing: - It seems that the tool has an option to sign in, but practically it does
not work. Currently the tool does not support creating an account. Every
user can work with a default account called demo. - An other issue is that it
is not possible to choose the appearance of the model elements from my own
Icons. As a result there is only a very limited choice for Icons in the tool. -

4



Since the sources for WebGME are very limited and thus not many examples
can be found. - Finally after discussing some issues with the developers of
the tool, I concluded that currently WebGME is not mature enough to fully
support the modeling of an RPG game. Moreover they recommended to use
GME instead of webGME for now (since they are still working on some open
issues).

. Based on the above, I concluded that by using WebGme it is only pos-
sible to build the abstract syntax and concrete syntax of the RPG game.
For building the transformation rules another tool must be used. There are
two other tools that came along with GME called UDM and GREaT [3][8].
Initially in order to build the rule-based transformation the output of GME
which is a UML class diagram in XML format, should be manually imported
to the UDM tool. After that UDM’s output can be manually imported in
the tool GREaT where the transformation of the RPG game can be created.
Finally, my plan is to use webGME for the first part instead of GME and
convert the output of webGME (JSON file) to XML and give it as input to
UDM and then to GreAT respectively. Figure 3 demonstrates this procedure.

Figure 3: Future plan

5



References

[1] M. Maroti, T. Kecskes, R. Kereskenyi, B. Broll, P. Volgyesi, L. Juracz,
T. Levendoszky, A. Ledeczi, Next Generation MetaModeling: Web- and
Cloud-based Collaborative Tool Infrastructure,Institute for Software Inte-
grated Systems, Vanderbilt University, Nashville, TN, USA.

[2] M. Maroti, T. Kecskes, R. Kereskenyi, P. Volgyesi, A. Ledeczi, On-
line Collaborative Environment for Designing Complex Computational Sys-
tems,Institute for Software Integrated Systems, Vanderbilt University,
Nashville, TN, USA.

[3] E. Magyari, A. Bakay, A. Lang, T. Paka, A. Vizhanyo, A. Agarwal, G.
Karsai, UDM: An Infrastructure for Implementing Domain-Specific Mod-
eling Languages,Institute for Software Integrated Systems, Vanderbilt Uni-
versity, Nashville, TN, USA.

[4] URL: https://github.com/webgme/webgme/blob/master/docs/tutorial.html

[5] URL: https://www.youtube.com/watch?v=0YCo4cpoB7k

[6] URL: https://www.youtube.com/watch?v=7eFP75n5lTY

[7] URL: http://www.isis.vanderbilt.edu/tools/GReAT

6


