A transformation of YAWL to AToMPM
Modeling Language

Srinivasan Balakrishnan
{Srinivasan.Balakrishnan@student.uantwerpen.be)’

Master of Computer Science, University of Antwerpen

September 2, 2015

Abstract

Modeling languages have been used for software development and
industrial applications. YAWL(Yet Another Workflow Language) is
one of the leading design pattern. Many business processes using this
simulation environment to manage, analyze, flowchart their needs.
The interesting thing is to design one modeling language in another.
AtoMPM(A Tool for Multi-Paradigm Modeling) is the another simu-
lation environment which works similarly like petri nets, Casual Block
Diagram. In this paper we are implementing YAWL in AToMPM to-
gether with its operational semantics. We first go through introducing
the project and related work. In the next section we define YAWL and
its tools, AToMPM and Implementing YAWL with AToMPM opera-
tional semantics. Then in the final section will conclude the work and
the path for future development.

1 Introduction

Design languages are the main perspective for software developing. Then
it will differentiated to many unique modeling languages like python, stat-
echarts, BPM(Business Process Management) , Yawl and ATomPM. These

*

T

modeling languages ensures efficient and effective business operations through
software making [1]. By this discipline the developers can be capable of de-
veloping a trust worthy software and analyzing tools. Every organization
woks under some kind of well disciplined work flow systems. In some cases
they do collaborate with other entities to improve the efficiency of their busi-
nesses. The simulation techniques perform main role in researches as well
for handling a large amount of data and calculations and its not a simple
process[2]. On the other hand bring up one simulation language to another
is an interesting part.

This paper explores the transformation modeling languages for another
level of simulation. Taking the simulation in to another modeling with its
semantics can be an newer approach to let it adapt in to it. Generally
every design languages has own set of working capacity and proficiency when
dealing with business models. Precisely for the organizations an research
oriented development it expresses variety of unique results. Analyze the
large amount of data and work flow pattern, we need sophisticated modeling
mechanism so that the newer modeling languages are very much coordinated
with the companies [2].

This paper addresses the possibilities of design pattern in other and ini-
tiate the way for the future ideas either. The idea is to make sure the lan-
guages can adapt with other, so that it will increase the chances improvising
the simulation terminology. The domain specific languages like AToMPM
has the space for in-building new tools with its semantical way of dealing
the model[13]. These are two different environment doing somehow similar
job(paper DSL forge). The furthers steps present the related work, YAWL
work flow pattern, AToMPM, implementation of YAWL in AToMPM and
concluding with this article.

AToMPM is an online graphical modeling environment, which uses a sub-
set of UML for the definition of modeling language and renders model ele-
ments(Lajmi, Martinez & Ziadi, -2014). AToMPM is similar to petri nets
and state charts, purely simulation oriented system with the collection of
formalisms and models[13]. It is also one of the design pattern which are
sectored in to steps. It is working based on the predefined formalisms helps
to design your own patterns and tools. Works based on the meta modeling
layered structure[13].

2 Related Work

The work has developed similar to our approach is Petri nets are modeled and
transformed by AToMPM simulation language[10]. Petri nets is one of the
know designing language, which is more base for other modeling environment.
Every step in petri nets is sequentially designed building process which makes
the transitions work well. Many simulation languages are more similar to
petri net model, so it gives an impression to the users that main design
languages were developed with the help of petri nets. The beauty thing in
formalisms are we build one in another with the help of their tools, to let the
languages work on their same style. AToMPM is the simulation formalism
has the ability to incorporate with some fewer modeling languages. [13]

@I for Multi-formalism and Meta-Modeling

@gos are modleled!
ttp atom3.cs.megillca] K

http:iatom 3.cs.megill.ca

Attributes:
- T String
Constraints:

Attributes:

- T String
Actions:
=T

Al

a2 | Mo W2 N4

| Visit MSDL at http://msdl.cs.mcgill.ca | .

Figure 1: Petri nets in AToMPM

To make the newer simulation languages to be able to model with AToMPM,
there are some internal applications which helps to build upcoming tech-
niques. Besides petri nets Casual Block Diagram(CBD) also used in AToMPM
for the modeling purposes. CBD is one of the modeling technique used for
simulation and constraint oriented methodologies. Such methods are part of
the modeling world to be able to cope up with the certain level of abstracting
techniques from other mechanisms[12].

3

For the pet nets formalism the transitions, token, place, Arc and inhibitor
are the main tools for making connections and transactions. To develop
these tools in AToMPM was an challenging task to do so. The next part
is developed by developing metamodel, models and transformation. By the
end of this part we are able to use the petri nets in AToMPM formalism. We
chose this example to briefly explain the similarity between what we had and
what we going to implement. There some more game examples also exist for
our references [4][5].

3 YAWL Workflow pattern

YAWL system is one of the most mature open-source workflow manage-
ment system available at present(understanding user references). Wikipedia
saids that YAWL is an extended form of petri nets and improvised design
environment[7]. YAWL support for the business process management and
organizational utilities which can deal with tons of data and applications for
the industries. It has been part of the medical sectors which helps to an-
alyzing, testing the data level abstractions[8]. For computing software in a
simple way and easy-to-use approaches the YAWL system is used. It support
for the high level graphics, application designs, deployment, execution and
monitoring for the software systems. Enabling the business development for
the organizations and research oriented sectors as well. The step by step
design used to analyze the data, deep overview of the software components,
functionalities of entities used. It exhibits the clear view of the related infor-
mation from the user point of view [2].

It has an comprehensive support for the control-flow systems. YAWL con-
tributes a large impact in modeling world with its operational and application
level design patterns. It is a service oriented architecture, so any language
can adapt with this system. It supports passing files as data and organize
those data by this internal engine. The data’s are sequentially scheduled by
the YAWL engine. To adopt the YAWL in other language is a lot of work, so
that it split in to three different sub parts. They are Control panel, Editor
and Engine[6][9].

3.1 Control Panel:

Its a small desktop application supports for starting, stopping, updates and
status. It shows the engine’s status either engine is running or stopped.

Start

Logon

Updates

Engine is Starting Preferences

Figure 2: Control Panel

3.2 Editor:

Its design window with the controls and tools. It is used for creating, deleting,
configuring, editing, validating and analyzing work flow specifications. The
window with tools and settings together.

@ VAW Exbion
BROCHICANON MO [N FINORS FO0R View M

21K ¥ 2 9 LA
[EUCHCH il Gmonray
=11 1=
(]
- ri |
Lo || A~
& ™ -~ cheskd / Sand
v r';‘) v \ ; w:::\ 1o
NN i :1;!.] g s
SV E] Ingulry
|H!.‘_‘“_P_. \.1 J"]
a3 V) e
s lon Chuck2 o :,Ei‘;, { Sen
N N " Rejecti
] | cut

X [Imrl.llnlnnnwu'm_lmhmIm.lwm-m:-tmulmn

Figure 3: YAWL Editor

3.3 Engine:

The YAWL engine is used for execution, once we done with the design works.
This is mostly for manging, manipulating and organizing the models.

nnnnnnn se Plan in YAWL

Simulation with YAWL Engine

Figure 4: YAWL engine

4 Defining Tools

In this section covered by YAWL tools and its use in the design perspec-
tives. YAWL has an unique tools used to model the architecture. Each and
every modeling language has their own different tools to handle the design
patterns. Every tool in the diagram below has the special use. YAWL tools
performs the main operation in YAWL work flow. This helps to designing,
Editing, Modulating, make connections and executing [8]. The user can de-
sign depending on their organizational requirements and needs. It supports
multiple platform to work with.

Condition: The tool condition is used for the defining constraints. It
works like if... then..else... way to check the condition is true or not. Depends
on the output it reacts.

Atomic Task: This function performs like transitions in petri nets. To
place an attribute or a value it supports. It is an action based tool runs an
operation.

Composite Task: It defines the set of atomic task are called composite
task.

O Condition D Atomic task
@ Input condition
Multiple instances
@ Output condition of an atomic task
Multiple instances
of a composite task
E@ AND-split task E:’ AND-join task

I:E XOR-split task @:I XOR-join task
I:@ OR-split task E- OR-join task

o tOkens

Figure 5: YAWL Tools

Arcs: The tasks and conditions are connected by the arcs.

Input Condition: The input condition to initiate the design. It is a
starting point for the model.

Output condition: It helps to stop or end the operation. This tool used
to complete design or model.

AND-Split and AND-Join: This function is an one of the atomic
task performs an AND operation, the two condition need to be true, then it
executes. Split and Join decides to separate the task or join the task.

OR-Split and OR-Join: It performs the OR operation like either...or,
one of the condition is true it executes. Depends on the split and join it
decides to split or combine the operation.

XOR-Split and XOR-Join: The XOR split is used to trigger only
one outgoing flow. XOR join performing an internal merge for the incoming
signal. If some conditions if true it executes, but in a inverted way.

Cancellation: This tools helps to remove the tokens from the model. It
is used to cancel the activity and case.

In our case of study we are combining the two web based modeling lan-
guage. So, by performing the transforming actions the whole language need
to be changed in to another. But its longer process, so that we decided to
start changing with tool in AToMPM. The next section will explain about

AToMPM and how this process will be implemented?[9].

5 AToMPM

AToMPM is a web based modeling technique, which uses UML as a subset for
the definition of modeling language. It is one of the visual modeling environ-
ment was developed by Eugine Syriani from MCGILL University, Canada. It
works under local host over on-line through its client and server. It is a tool
for multi paradigm modeling for building metamodels, transformations and
for executing Formalism Transformation Graph(FTG)[5]. In AToMPM the
languages like petri nets, statecharts and CBD are metamodeled using the
internal formalisms. The models are synthesized in AToMPM as abstract and
concrete models. Every model works with AToMPM are metamodeled and
modeled as abstract syntax and concrete syntax. AToMPM uses the UML
as the main formalism to develop the other languages in to it. It uses class
diagram, entity diagram, relational diagram to design. It is an improvised
version of AToM3 which can be called as a successor of AToM3/[4].

AToMPM runs on a web browser and provides the coordination for dis-
tributed collaboration in real-time. So the data and design can be accessed
only over the web [12]. It support for Domain Specific Language(DSL) to
collaborate with the different domain languages. The language is totally de-
pends on the formalisms and simulation work flows. So, the internal opera-
tions requires the appropriate terminology to move on to further steps. Every
level works under some rules, for example it starts by design class diagrams
and transitions between them, transformation to graph model, scheduling
the design and generating code. The following figure shows the general view
of AToMPM window and some toolbars[10].

Visual modeling contains two different semantics 1)Operational Seman-
tics and 2)Denotational Semantics. The operational semantics is the process
of transforming the defined model in to their own look(Symbols for the lan-
guages) and performing some simulation experiments. Denotational seman-
tics are the further development of previous progress. It uses the petri net
formalism to create transitions and token for the concern language we want
to develop. Then it uses the simulation techniques to assign the appropriate
action for the symbol we created. In our approach we are going do the similar
operation for the YAWL work flow patterns. Further section describes how
do we bring up YAWL in AToMPM formalism.

[
D EsFfEn~RZ v 0O

Figure 6: AToMPM editor

6 Transforming YAWL work flow in AToMPM:

The goal of this paper is to implement one modeling language in to another.
So, we are transforming YAWL language in AToOMPM with its semantics|3].
YAWL is quite a big environment to deal with. And also it has three different
sections to run it. Then we decided to design YAWL tools in AToMPM with
its operational semantics. The plan is to make YAWL tools works in the
same manners as it is in another language. First we start by the design a
class diagram for the YAWL tools. It is actually called as abstract syntax,
for that we have to use pre defined formalisms to generate the class diagram
[11]. The user can create, edit, delete and save the model with the help
of some tools. The new design contains all of its tools which shown in the
section Defining Tools. There are in-builded tools of AToMPM are lead us to
develop the model. This model is called as metamodel of YAWL tools. The
following figure shows the actual design. The arc between the class diagrams
are transition between two action, for example from atomic task condition,
condition task, and so on.

The arc defines the dependency of the another class diagram. There
are some constraints like conditons AND-Join has the dependency from
condition class diagram. There are some conditions also applied for using the
arcs. It has two choices, the options are for being dependent with neighbor
class or not. We need to explore the YAWL in AToMPM, so depends on the
requirement of tools we can change our choices.

Figure 7: Class Diagram

7 Building concrete syntax:

Next step is to creating concrete syntax for our metamodel. We had to load
some tool bars to model them. In this step we are giving a face(symbol) for
every tools [13]. The same images are used to define their functionalities of
every tool. Tools are having unique actions and performances. Due to that
cause we had to use the precise symbols for each tool. The following diagram
shows the view of concrete syntax.

2O ®
L i BEIidy | — 2.

e e o S

Figure 8: Concrete Syntax

The tool has been placed in that dotted square box. The pop up win-
dow appears to ask for the options for the positioning our tool. By this
progress for every class supposed to create a symbol to let them work.
This model will be compiled by the compiler tool of AToMPM and saved
as YAWL.defaultIcons.metamodel. Once this is done to do the transforma-
tion, we needed to compile our metamodel to patterned metamodel. While
compiling with compilation tool, the window pops up for select the our
original abstract metamodel. We need to select out YAWL.metamodel and
then click Ok, then it creates two new files in the same folder which helps

10

to create the transformation. The files are YAWL.pattern.metamodel and
YAWL.defaultIcons.pattern.metamodel. The patterned Icons looks with the
hash(#) symbol on top left corner of the Icons(tools of YAWL).

8 Transformation:

The next step is to create a transition to each other nodes, so we had to create

an action between two nodes to connect. This needs to be done for all the pos-

sible connections between YAWL tools. The process start with load a tool bar

of trasformation by FormalismsTrans formationTrans formation,ule/Tranformation.defaultIcon
The below diagram shows how the transformation tools look like.[10]

» 0

Figure 9: Tranformation of YAWL

The two boxes are LHS(Left Hand Side) and RHS(Right Hand Side) and
the dotted box represents the (NAC)Negative application conditions [10].
LHS represents before the transition and RHS represents after the transition
between two tools. And the NAC represents the negative action like in the
case of there is no transitions happened.

In the next example shows that creation o input condition for YAWL. For

this we needed to use th pattern icons to give as input to the transformation
tool[11][12].

8.1 Creation of Nodes:

In this part of transformation, the rest of the tools has to be specified and
modeled for the purpose of the tool. Every icons or tools must be initialized
to make the tool to perform the appropriate action[10][6].

11

Figure 10: Creating input condition

Lo m

O o
O 1
"5

Figure 11: Creating nodes

8.2 Connect Nodes:

In YAWL workflow all nodes are connected visually. So the connection be-
tween two nodes since from start node till the end node. If there is no link
between nodes then the model will be considered as a wrong model[12]. The
connection for all the possible direction were modeled in transformation to
perform the action similarly as YAWL workflow. Every actions are modeled
in the same way as before by using the transformation tool[12].

There should be one thing is every model should end with the output or
end condition. Without the output or end condition the model is not fulfilled
or the whole model.

Once the all the actions were created the next step is to play with the
creation actions. This way the workflow can be checked consistently. The
next section will explain more about the process have been done[10].

12

Figure 12: Connecting nodes

9 Simulation:

In this simulation process the simulation must start from where the model
begins with. In simulation the black dot tool is the starting point of the sim-
ulation to start[13]. So in YAWL the model start with the Start conditions.
For the start condition we used Q-Rule. Under the rule green tick symbol
confirms the action succeeded; the green cross symbols confirms the action
fails. So below the every rule the tick and cross symbol makes sure the model
executes further or not. Then we created the B-Rule, is sub-transformation
for all the actions. So we place all the actions in the B-Rule. For the actions
we created A-Rule for every single transformation action we have created in
the previous section[10]. For the end condition we have created the Q-Rule

:Workflow
v v
] T] |
ecepes] comoons] |
X

Figure 13: Simulating the workflow pattern

as well to end the simulation. The circled green dot confirms the positive end

13

Figure 14: Running transformation

for the model. The red cross symbol executes once the action failed. The
next figure shows that the running of simualtion by using the transformation
controller button. We need to load our target model to run the transforma-
tions. This process is to check the model has been created finely and check
our simulation part works well. In this procedures the operational semantics
of the YAWL has been developed to tell the modeling world and developers
that AToMPM is capable of creating another tool[10].

10 Conclusion and Future work:

In this paper we presented the way to create modeling languages in another.
YAWL work flow pattern is an higher level of modeling which dealing with
many researches and industrial needs. On the other hand AToMPM is an-
other visual modeling working on the web browsers. The research shows the
possibility of creating and merging language together. Even though we ex-
perimented that to make the path for the future innovative ideas. The idea
is to implement YAWL in to AToMPM with its operational semantics was
achieved with this work. There are lot of newer modeling environment need
for the business processes. YAWL is a broad and cool model application to
perform analysis, business process and modeling, so we considered to develop
the tools first, then the further development will be able to design the entire
work flow language in AToMPM.

References

[1] Wynn,M.T., De Weerdt,J., Ter Hofstede,A., van der Aalst,W., Rei-
jers,H.A., Adams,M., Ouyang,C., Rosemann,M., & Low,W.Z.(2013).

14

Cost-Aware Business Process Management: A Research Agenda. Aus-
tralia, Brisbane:Queensland University

Nguyen, T., Trifan, . & Desideri,J-A.(2010). A Distributed Work-
flow Pattern for Simulation. France, Grenoble:Project OPALE,INRIA
Grenoble Rhone-Alpes & France, Sophia-Antipolis, INRIA Sophia-
Antipolis Mediterranee

Lajmi,A., Martinez,J., & Ziadi,T.(2014). DSLFORGE: Textual Model-
ing on the Web. France, Paris: Universite Pierre et Marie Curie

Mustafiz,s., Denil,J., L’cio,L., & Vangheluwe,H.(2012). The FTG+PM
framework for Multi-Paradigm Modeling: An Automotive Case Study.
Belgium, Antwerp: University of Antwerp & Karel de Grote., Canada,
Montreal: McGill University

Mustafiz,s., Denil,J., L’cio,L., Vangheluwe,H & Jukss,M .(2013).
FTG+PM: An Integrated Framework for Investigating Model Trans-
formation Chains. Belgium, Antwerp: University of Antwerp & Karel
de Grote., Canada, Montreal: McGill University, School of Computer
Science

Recker,J.(Ed.)., & La Rosa,M.(2012). Understanding User differences in
open-source work flow management system usage intentions. Australia,
Brisbane:Queensland University

Wikipedia: YAWL Workflow

Mans,R.S., & van der Aalst,W.M.P.(2013). Supporting the Workflow
Management System Development Process with YAWL. The Nether-
lands, Eindhoven: Eindhoven University of Technology

Chen, Z.(2012). Workflow Management Theories and Techniques includ-
ing the Dat Perspective. Netherlands, Twente: University of Twente

AToMPM: http://www-ens.iro.umontreal.ca/ syri-
ani/atompm/atompm.htm

Ergin, H., Syriani, E.(2014). AToMPM solution for IMDB case study.
United States of America, Tuscaloosa AL: University of Alabama

15

[12] Corley,J.(2013). Debugging for Model Transformation. United States of
America, Alabama: University of Alabama Tuscaloosa

[13] Jukss,M., Vangheluwe,H., & Verbrugge,C.(2012). Implementing Graph
Transformation Languages using RDF storage and SPARQL Queries.
Belgium, Antwerp: University of Antwerp

16

