
From model to simulation, the a-causal way

Yves Maris

Abstract

Modelica has become an ad-hoc standard for a-causal modeling. The aim of
this paper is to increase understanding of the language by giving a complete
overview ranging from language features to model compilation. To illustrate
this compilation process to simulate a model, a simple Modelica like compiler,
for a-causal to causal block diagrams, is constructed and discussed.

Keywords: Modelica, mathematical modeling, Modelica compilation
process, a-causal block diagrams, ABD, ABD compiler

1. Introduction

Block oriented languages have been around for quite some time. A well
known example of this is the Simulink language introduced by Mathworks in
1993 (Simulink and Natick, 1993). In block oriënted languages a hierarchical
structure of individual blocks with defined input and output is build. The
relation between different blocks is solely defined by the output of one block
being fed into the input of an other block. This is why this kind of modeling
is called causal. Yet there is another way describe individual parts of a
model and that is trough equations. This means these components will not
describe an output with a specific output anymore. This approach is called
a-causal modeling. There has been a number of a-causal modeling languages
but this paper will focus on Modelica. In the first section an overview will
be given of these other languages and how they relate to Modelica. The
second section will go more in depth on the features of the language. More
specifically an overview of the object oriented constructs and the manner
in which mathematical modeling is made possible will be discussed. After
that an overview of the Modelica compilation process is given in which each

Email address: yves.maris@student.uantwerpen.be (Yves Maris)

Preprint submitted to Model Driven Engineering - UA January 21, 2015

step from model to simulation is discussed. The theory explained in those
sections will be put in to practice by building a Modelica like compiler for
a-causal block diagrams that will generate the simulation code in a Modelica
like manner.

2. Related work

Modelica isn’t by far the first a-causal modeling language. Languages like
Dymola (Otter et al., 1996), NMF (Vuolle and Bring, 1997) and Omola (An-
dersson, 1990) can be seen of the predecessors of Modelica. Some languages
like NMF continued to be used in specific domains like building simulitions
Vuolle and Bring (1997) while others disappeared completely. Dymola is
now a commercial modeling and simulation environment based on the Mod-
elica language, it no longer implements the Dymola language. This tool even
makes it possible to export modelica models to the Simscape models and
inversely, import simscape models as Modelica models. One of the main
competitors of Modelica now is Simscape by The Mathworks. It was devel-
oped as an add-on for Simulink which uses the Mathlab language. Simscape
differs from Modelica in the compilation process which leads to some vari-
ability in efficiency. Modelica compilers might be more efficient in most cases
when model fragmentation is present the Simscape compiler has an advan-
tage. A more in depth explanation of this topic can be found in Section 4.
An other example of a modeling language similar to the Modelica language
is EcosimPro, developed by Empresarios Agrupados A.I.E for the European
Space Agency. This language was originally developed for simulating space-
craft systems tough it can be used for more general purpose applications
Laurini et al. (1999). There are a lot of similarities between these tools
because most of them are in some way based on the phd thesis of Hilding
Elmqvist (Elmqvist (1978)).

3. An overview of Modelica

The aim of this section is to give a basic understanding of the capabilities
and constructs of Modelica. This means no detailed description will be given
on how to use the language. An excellent tutorial complete with examples is
however given by Elmqvist et al. (1999) on which this section will be based.

Modelica is an object oriented modeling language designed for a-causal
modeling although it also supports causal models. This makes it possible to

2

model complex systems in an intuitive way. When it is to expensive, com-
plex or dangerous to construct a prototype of a real world system it might
be appropriate to make a virtual model instead. A system in Modelica is
an object or a collection of objects of which we want to study the behaviour
by running experiments. These systems can be either natural or artificial of
nature. The basics of Modelica is that you build components that interact
with each other. Each of these components can be build up from other com-
ponents. This concept is called hierarchical modeling. Physical connections
between components allow interaction between them. A common misconcep-
tion about Modelica is that it is a domain specific modeling language. This
is not true since the language has no definition on how to impose constraints
to models.

3.1. Object oriënted

Modelica differs from traditional object-oriënted programming languages
in a sense that it uses the object oriëntation aspect mainly as a structuring
concept (Fritzson (2010)). This while the traditional languages also use it for
dynamic message passing. This section will explain which concepts of object
oriented languages are used within the language.

3.1.1. Classes

Everything in Modelica is modeled as a class ranging from physical con-
nectors to functional components. This has some great advantages for the
modeler since he only has to learn the features of this class to be able to
use the language. In some cases it might not be desired to make use of
the full functionality of this class concept. For this Modelica offers a set
of seven restricted class types. Each of these restricted classes is defined
by it’s own keyword that can will be used instead of the class keyword.
A small overview of these restricted classes and the imposed restrictions is
given below.

• Type: A class definition in Modelica creates a type name for that
class. This restricted class can only define such a type name using the
build-in classes like fore example Real.

• Connector: This class exists for defining physical connections.

• Model: Can not be used as a connector.

3

• Record: This class can only contain data and no equation. It can be
tought of as a parameter set.

• Block: A class with input-output causality (For creating causal mod-
els).

• Package: Can only contain declarations of constants and classes. This
is used to group these related classes together to create structure and
avoid so called “name clashes”.

• Function: A class with input arguments that is dynamically instanti-
ated when called.

3.1.2. inheritance

One of the great strengths of object orin̈ted languages is inheritance.
In other words the content and behaviour of the superclass will be copied
to subclass. This concept is fully supported within the Modelica language.
This is done by the keyword extends followed by an optional access specifier
followed by the superclass. Multiple inheritance is also supported, a common
problem with this is so called diamond inheritance where two classes used for
multiple inheritance have the same base class as seen in Figure 1. In c++
for example this problem is solved by virtual base classes. In Modelica it is
even simpler when the scenario in Figure 1 occurs simply one instance of the
base class a is kept. No explicit action is needed. It is also possible to define
interfaces for a class. This can be done by using the keyword partial in
front of the interface specifying that the class definition is incomplete.

3.1.3. Information hiding

In the default behaviour of Modeling all variables are accessible from the
outside via the dot operator. Information hiding is crucial to create higher
maintainability. To enforce this Modelica has one access specifier namely
protected. protected members can still be accessed from subclasses of the
respective class in which the variable is defined. Yet no other access specifiers
are defined to maintain simplicity.

3.2. Mathematical modeling

3.2.1. Variable types

The functioning of Modelica is based around two different types of vari-
ables. Each of this variables has a different behaviour when a connection is

4

Figure 1: Caption

made. The first type is trough variables, they were added to provide a way
to follow Kirchhoff’s current law, as stated in Definition 1. This law states
that the sum of all currents in one component should be zero and similar
laws apply to fluids and other systems. This must be specified by adding the
keyword flow in front of the variable declaration. The other kind of variables
are across variables. This is the default variable types are connected across
variables are set to equal.

Definition 1 (Kirchhoff’s current law).
n∑

i=k

Ik = 0 With n the number

of incoming and outgoing connection.

3.3. Equations

Equations are used to express relations between variables. Do not con-
fuse equations with assignment statements. There is no notion of assignment
within equations also there is no particular order in which they are evaluated.
Both the left hand and the right hand side of an equation can contain expres-
sions. Modelica does define specific sections for assignment statements com-
bined with control structures. These sections are called algorithm clauses.

5

Figure 2: The compilation steps taken by a Modelica compiler

4. The Modelica compilation process

In this section a description will be given of the compilation process by
a Modelica compiler (Fritzson et al., 2002). The general steps of used by
for example Open Modelica and Dymola will be discussed, this process is
graphically represented in Figure 2 Zimmer (2009). The compilation starts
by flattening the model, in this step all object oriënted structures are removed
and a collection of differential and algabräıc equations is left. A causilasation
step is then applied to the resulting flat model .In this step is implemented
a-causal equations are converted to causal statements. This is also where
the Modelica language takes an other approach than Simscape. There is no
causilasation step in Simscape equations are resolved by a numerical solver.
This means Modelica is in a disadvantage when it comes down to dynamic
models. If a model changes the causalisation step has to be repeated for the
new model(s). The compilation process will be fully illustrated in Section 5.

5. Implementation

To provide greater insight of how a a-causal model compiler functions,
a simple one will be implemented. The input of this compiler will be a a-
causal block diagram (ABD). Before any other steps are taken the model is
flattened as described in Subsection ??. A a-causal block diagram consists
of multiple blocks connected by links. Yet because the model is a-causal
these links are not directional. The first task to make the model causal is
to assign IO causality to the ports of the model in order to make the links
directional. Each of the a-causal blocks corresponds to a certain mathemat-
ical operator, as seen in Section 5.2. Assigning IO to the blocks does not
necessarily match the a-causal block with it’s causal equivalent. This is why
some transformation is necessary to achieve an equivalent meaning for the
resulting causal block diagram. This last stap in the compilation process is
discussed in Section 5.4.

A different compiler is also created in order to be able to represent the
different constraint equations that describe the ABD model in the form of a

6

latex file. This is done by assigning a unique name to each link in the ABD.
These names are represented by an upper case alphabetical letter followed
by a optional number. Some ports are not included in a link because it they
are used as an input or output for the entire ABD. In this case the corre-
sponding variable is displayed as block_name(port_name). An overview of
the equations described by these variables is given in Section 5.2.

5.1. Flattening

In this implementation a choice has been made to first resolve all hierarchy
before beginning the causilisation step. This approach is also taken by most
Modelica compilers. It is important to mention that this does not mean
that the resulting CBD will be flat. Hierarchy can be introduced again by
transforming certain blocks in their causal version as seen in Section 5.4. The
model is flattend by removing all InputBlocks and OutputBlocks from the
child blocks and removing hem with wire blocks. In the flattening process
these wire blocks also get their expected causality assigned to them to make
sure no meaningless models are generated. The links of all parent and child
blocks connected to these input and output blocks are also removed and
replaced with the corresponding WireBlock links. The WireBlock is a simple
block with two ports, P1 and P2, that describes the constraint equation
signal(P1) = Signal(P2). Every block that was part of the Childblock is
also renamed to name_child_CBD + _ + name_block.

5.2. Assigning IO causality

Needless to say that the basics of a causal model is that the ports have IO
causality. In an ABD there are some ports that have predetermined output
causality:

• A constant block

• An input block

By starting from these output ports all connected ports can be labeled as
input. If all ports of the block have been assigned input causality, the last
port can just be labeled as an output port.This is because every block in this
implementation has exactly one output port. An iteration in the IO causality
assignment algorithm consists of checking this last statement and labeling a
port as input when it is connected to a output port and visa versa. If the
number of blocks with unknown causality stays the same for three iterations,

7

the algorithm fails and decides that no solution is possible. The algorithm is
described in pseudo code as follows:

BlocksToAssign = every block with some port with
unknown c a u s a l i t y

whi l e blocksToAssign :
f o r b lock in blocksToAssign :

i f only one port to a s s i gn :
i f output i s known

unknownPort = input
e l s e :

unknownPort = output
f o r port in block :

i f outputport connected to port :
port = input

e l i f inputport connected to port :
port = output

For some ports a more “aggressive” approach is taken and the preferred IO
is specified when the component is specified in the constructor, for example
in the IC and delta_T ports of the Derivitor and integratorBlock.

s e l f . i n f o L i n k s [” IC ”] = c a u s a l i t y . INPUT

5.3. Corresponding operators

Every a-causal block has a specific meaning that might differ form the
causal meaning. These meanings can be found in Table 1. A brief discussion
is given for the most important blocks.

AdderBlock. The meaning of an a-causal Adder block will differ quite a bit
form that of the corresponding causal block. While the causal block has a
number of predefined inputs and one output port. The incoming signals will
be summed to the output signal that is than appended to the output ports
signal. In the a-causal version on the other hand it is not possible to express
the signal of one port as an operation applied to the signals of the other port
since this implies that there is some causal relation. The relation between the
ports has to be representable by some constraint equation. In the case of the
adder block this can be done by summing all signals to zero. This also means
that there will be no difference in the causal meaning when different input
or outputs Causalities are assigned. We say that the order of the assigned

8

A

B

C = A + B + C = 0

A

B

C = A ∗B ∗ C = 1

A B
= A + B = 0

A B1
A = A + B = 0

SQRA B
= A2 = B

A Bln = lnA = B

A B

IC dt

d
dt

= d
dt
A = B

A B

IC

dt

∫
=

∫
ddtA = B

Table 1: The meanings of the most important a-causal block

9

ports does not matter for the assigned causality. This is why we will call this
type of blocks unordered causal blocks.

NegatorBlock. This is a natural a-causal block, this means that there is a
one to one mapping between the causal and the a-causal block. If we take
a look at the a-causal blocks, the NegatorBlock can be represented as a
simplification of the AdderBlock. If the number of ports of the Adder block
is reduced to two, lets call them P1 and P2, than the equation that describes
the relation between the these ports equals: signal(P1) + signal(P2) = 0.
This can also be written as signal(P1) = −signal(P2) witch is the causal
meaning of the block.

ProductBlock. The product block can be approached in a very similar way
as the adder block. The causal meaning of this block again is very similar to
that of the adder block. In this block the product of all inputs is appended
to the output signal. The connection of the a-causal block is represented by
the constraint equation that takes the product of all variables and states tat
this must equal zero.

InverterBlock. The InverterBlock is a second block that is natural a-causal.
Here the block can be represented as a product block with two ports. If we
call these ports P1 and P2 this gives the constraint equation signal(P1) ∗
signal(P2) = 1. If this equation is converted to signal(P1) = 1

signal(P2)

it becomes obvious that the a-causal meaning is the same as that of the
corresponding causal block.

SQRBlcok. The SQRBlock has two ports, P1 and P2, that represent the con-
straint equation signal(P1)2 = signal(P2). In contrast to the other blocks
the choice of the input and output ports does change the causal meaning.
The order of the ports does matter in this case, these type’s of blocks are
called ordered a-causal blocks.

LNBlock. Just like the SQRBlock, the LNBlock has two ports. The operator
described by this block equals ln signal(P1) = signal(P2). This means two
causal operations can be represented by this block, either the exponential
operation or the natural logarithm. The choice of the input and output
ports will completely determine which one of these two operations will be
represented.

10

IntegratorBlock and DerivatorBlock. Both the a-causal IntegratorBlock and
DerivatorBlock have 4 ports (IC, delta_t , P1 and P2). The IntegratorBlock
discribes the operation

∫
signal(P1) = signal(P2) while the derivitor block

discribes d
dt
signal(P1) = signal(P2). Although the a-causal operators are

obviously different they can both represent the same causal operators. An
IntegratorBlock with P2 as input and P1 as output is completely equivalent
to a DerivatorBlock with P1 as input and P2 as output and visa versa.

5.4. Transforming to a CBD

As seen in Subsection 5.2 Some operators blocks need some transforma-
tion to make the a-causal block meaning match the one of the a-causal blocks.
In this section these transformations will be discussed for the different types
of blocks

Unordered a-causal blocks. For unordered causal blocks it does not matter
which ports are identified as input or output, it will not change the corre-
sponding causal block. This however does not mean that there is a one to
one mapping between the causal and a-causal block. The AdderBlock and
ProductBlock are the perfect example of this.If a correct IO causality is done
the blocks will have one output port. If we try to convert this to it’s cor-
responding CBD meaning we will actually get a small CBD. This CBD will
contain a adder block and a NegatorBlock. The AdderBlock will get the
two input signal and the result will be passed to the inverter block. This
CBD will satisfy the constraint equation defined by the a-causal block. The
following CBD is generated for the a-causal AdderBlock:

BlockName = CBD(block name = BlockName , i n p u t p o r t s =
[”IN1” , ”IN2”] , output por t s = [”OUT1”])

BlockName . addBlock (AdderBlock (block name=”a1”))
BlockName . addBlock (NegatorBlock (block name=”n1”))
BlockName . addConnection (”IN1” , ”a1”)
BlockName . addConnection (”IN2” , ”a1”)
BlockName . addConnection (”a1” , ”n1”)
BlockName . addConnection (”n1” , ”OUT1”)

The ProductBlock also takes a similar approach. In this case the resulting
CBD will consist of a causal Productblock connected to a inverterBlock.

11

Natural a-causal blocks. The NegatorBlock and the InverterBlock block are
two examples of natural a-causal blocks. By definition this means that the
a-causal meaning already matches the causal one. For every one of these
blocks a equivalent causal block can be defined with the previously identified
input and output ports without further transformation.

Unnatural a-causal blocks. We can speak of an unnatural a-causal block when
an additional transformation step is needed to make sure the meaning of the
resulting causal block is consistent with that of the original a-causal block.
This might mean that one causal block is replaced with a network of causal
blocks or that the a-causal block can correspond to multiple causal blocks.
A distinction is made between two types:

Ordered a-causal blocks For ordered a-causal blocks the labeling of
the ports as input or output will influence the corresponding a-causal block.
This is the case for both the LNBlock and the SQRBlock. For example if port
P1 is labeled as input and P2 as output, the resulting block will be product
block that takes the same input signal for both ports. This represents a
square operation which would result in the following output:

BlockName () = CBD(block name = ”BlockName” , i n p u t p o r t s
= [”IN1”] , output por t s = [”OUT1”])

BlockName . addBlock (ProductBlock (block name=”p1”)
BlockName . addConnection (”IN1” , ”p1”)
BlockName . addConnection (”IN1” , ”p1”)
BlockName . addConnection (”p1” , ”OUT1”)

But when the causality is reversed and P2 becomes an input while P1 be-
comes an output, the corresponding causal block changes. It must now cor-
respond to a block representing the square root operation. In the case of the
CBD simulator in which this compiler was based this is a root block which
takes the n-root of the input and n is an other input signal. To achieve the
square root operation a constant block with value two was connected to the
input representing n. This would result in the CBD below:

BlockName = CBD(block name = ” BlockName ” , i n p u t p o r t s
= [”IN1”] , output por t s = [”OUT1”])

BlockName . addBlock (RootBlock (block name=” r1 ”) ”
BlockName . addBlock (ConstantBlock (block name=”c1” , va lue

=2.0)

12

BlockName . addConnection (”c2” , ” r1 ” , input port name = ”
IN2”)

BlockName . addConnection (”IN1” , ” r1 ”)
BlockName . addConnection (” r1 ” , ”OUT1”)

A similar approach is again taken in for the LNBlock but the difference
is that the causal GenericBlock is used to use the log and exp operations
from the python library. These functions represent implement the ln and
ex operation. The DerivatorBlock and IntegratorBlock are both expanded
in the cbd in this implementation. This means they are just compiled to
a IntegratorBlock and a DerivatorBlock and not to a construction of other
causal blocks. This allows these decisions to be made in the CBD compiler

6. Testing the compiler

The compiler described in Section 5 is developed in a test driven manner.
This means a test suite is created to automatically verify the implementation.
The python library “unittest” is used for the implementation. Since there
are in fact two individual compilers, one generating latex code and the other
a CBD model, two kinds of tests had to be created.

Latex tests. For each possible a-causal block a test is created. In each of these
tests a minimal model is defined. Than the function getLatex() is called
for that block to generate the latex output of interest. To determine whether
this output is correct it is matched with a regular expression representing
all acceptable outputs for the given model. To make this explanation more
concrete a example is given for the InverterBlock

s e l f .ABD = ABD(” ABD for b lock under te s t ”)
i 1 = Inve r t e rB lock (block name=”i 1 ”)

s e l f .ABD. addBlock (ConstantBlock (block name=”c1 ” , va lue
=5.0))

s e l f .ABD. addBlock (i 1)
s e l f .ABD. addBlock (Inve r t e rB lock (block name=”i 2 ”))

s e l f .ABD. addConnection (” c1 ” , ” i 1 ”)

13

s e l f .ABD. addConnection (” i 1 ” , ” i 2 ”)

p = re . compi le (’ [A−Z]{1}\d∗\∗ [A−Z]{1}\d∗ = 1 ’)

s e l f . a s se r tTrue (p . match (i 1 . getLatex ()))

The ABD described in this test is very simple It is just a constant block being
connected to an InverterBlock that is connected to a second InverterBlock.
In this test the output of the first one is tested. As seen in Subsection 5.2
the meaning of the inverter block is A ∗ B = 1 if the connected link names
are A and B. The regular expression [A-Z]{1}*[A-Z]{1} = 1 simply says
that the product of two link names is one as stated in by the meaning of this
block. Simular approaches have been taken for the other blocks.

CBD tests. A completely different approach is taken to test the CBD com-
piler. This compiler does not only need to produce correct syntax, the re-
sulting CBD also has to be meaningful. To make sure this is the case a
(hierarchical) ABD model is created. This model is than compiled and the
resulting CBD model is compiled using an appropriate compiler. The output
of this execution is than captured and converted to a string. If this string
matches the expected output, the compiler has created a valid model.

7. Conclusion and future work

To conclude this paper we give a brief summary of the most important
concepts seen in this paper. Firstly in the study of the Modelica language
we found found that the system behaviour was described by constraint equa-
tions. In the compilation process a Modelica model undergoes a flattening
step before that flat model is causilised. This same process was implemented
in the CBD to ABD compiler. After the flattening step ech port is labeled as
either input or output. Each of these blocks has a corresponding operator.
Using the causal blocks with their corresponding operators the network is
than transformed to a CBD with the same meaning as the ABD. To improve
the compiler more extensive tests could be written to test for borderline cases.
different versions of the IntegralBlock and DerivatorBlock blocks could also
be made so their hierarchy is expanded in the ABD.

14

Andersson, M. I., 1990. Omola: an object-oriented language for model rep-
resentation.

Elmqvist, H., 1978. A structured model language for large continuous sys-
tems. Lund Institute of Technology.

Elmqvist, H., Boudaud, F., Broenink, J., Brück, D., Ernst, T., Fritzson, P.,
Jeandel, A., Juslin, K., Klose, M., Mattsson, S., et al., 1999. Modelicatm-
a unified object-oriented language for physical systems modeling. Tutorial
and Rationale, versión 1.

Fritzson, P., 2010. Principles of object-oriented modeling and simulation with
Modelica 2.1. John Wiley & Sons.

Fritzson, P., Aronsson, P., Bunus, P., Engelson, V., Saldamli, L., Johansson,
H., Karstöm, A., 2002. The open source modelica project. In: Proceedings
of The 2th International Modelica Conference. pp. 18–19.

Laurini, D., Thirkettle, A., Bockstahler, K., 1999. Supporting Life: Environ-
mental Control and Life Support for the Multi-purpose Logistics Module
(MPLM) of the International Space Station. ESA Publications Division.

Otter, M., Elmqvist, H., Cellier, F. E., 1996. Modeling of multibody systems
with the object-oriented modeling language dymola. Nonlinear Dynamics
9 (1-2), 91–112.

Simulink, M., Natick, M., 1993. The mathworks. Inc., Natick, MA.

Vuolle, M., Bring, A., 1997. An nmf based model library for building cli-
mate and energy simulation. In: Building Simulation’97-Fifth Interna-
tional IBPSA Conference.

Zimmer, D., 2009. Module-preserving compilation of modelica models. In:
Proc. of the 7th International Modelica Conference, Como, Italy.

15

