
(Domain-Specific) Modelling Language Engineering

Hans Vangheluwe

5 September 2010, Lisboa, Portugal

(Domain-Specific) Modelling Language Engineering

Overview
1 Domain-Specific (Visual) Modelling – DS(V)M

What/Why of DS(V)M (and DS(V)Ls) ?
2 Dissecting Modelling
3 Dissecting Modelling Languages
4 Building DS(V)M Tools Effectively

1 Specifying syntax of DS(V)Ls:

abstract (meta-modelling)
concrete (textual–visual)

2 Specifying DS(V)L semantics: transformations
3 Modelling (and executing) transformations:

(rule-based) transformation languages

2

(Domain-Specific) Modelling Language Engineering

Domain-Specific Modelling Example

NATO’s Sarajevo WWTP
www.nato.int/sfor/cimic/env-pro/waterpla.htm

3

(Domain-Specific) Modelling Language Engineering

DS(V)M Environment

www.hemmis.com/products/west/

4

(Domain-Specific) Modelling Language Engineering

Why DS(V)M ?
(as opposed to General Purpose modelling)

match the user’s mental model of the problem domain
maximally constrain the user (to the problem at hand)
⇒ easier to learn
⇒ avoid errors
separate domain-expert’s work
from analysis/transformation expert’s work

Anecdotal evidence of 5 to 10 times speedup

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley, 2008.

Laurent Safa. The practice of deploying DSM, report from a Japanese appliance maker trenches. In Proceedings of the 6th

OOPSLA Workshop on Domain-Specific Modeling (DSM’06), pp. 185-196, 2006.

5

(Domain-Specific) Modelling Language Engineering

Why DS(V)M ?
(as opposed to General Purpose modelling)

match the user’s mental model of the problem domain

maximally constrain the user (to the problem at hand)
⇒ easier to learn
⇒ avoid errors
separate domain-expert’s work
from analysis/transformation expert’s work

Anecdotal evidence of 5 to 10 times speedup

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley, 2008.

Laurent Safa. The practice of deploying DSM, report from a Japanese appliance maker trenches. In Proceedings of the 6th

OOPSLA Workshop on Domain-Specific Modeling (DSM’06), pp. 185-196, 2006.

5

(Domain-Specific) Modelling Language Engineering

Why DS(V)M ?
(as opposed to General Purpose modelling)

match the user’s mental model of the problem domain
maximally constrain the user (to the problem at hand)
⇒ easier to learn
⇒ avoid errors

separate domain-expert’s work
from analysis/transformation expert’s work

Anecdotal evidence of 5 to 10 times speedup

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley, 2008.

Laurent Safa. The practice of deploying DSM, report from a Japanese appliance maker trenches. In Proceedings of the 6th

OOPSLA Workshop on Domain-Specific Modeling (DSM’06), pp. 185-196, 2006.

5

(Domain-Specific) Modelling Language Engineering

Why DS(V)M ?
(as opposed to General Purpose modelling)

match the user’s mental model of the problem domain
maximally constrain the user (to the problem at hand)
⇒ easier to learn
⇒ avoid errors
separate domain-expert’s work
from analysis/transformation expert’s work

Anecdotal evidence of 5 to 10 times speedup

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley, 2008.

Laurent Safa. The practice of deploying DSM, report from a Japanese appliance maker trenches. In Proceedings of the 6th

OOPSLA Workshop on Domain-Specific Modeling (DSM’06), pp. 185-196, 2006.

5

(Domain-Specific) Modelling Language Engineering

Why DS(V)M ?
(as opposed to General Purpose modelling)

match the user’s mental model of the problem domain
maximally constrain the user (to the problem at hand)
⇒ easier to learn
⇒ avoid errors
separate domain-expert’s work
from analysis/transformation expert’s work

Anecdotal evidence of 5 to 10 times speedup

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code Generation. Wiley, 2008.

Laurent Safa. The practice of deploying DSM, report from a Japanese appliance maker trenches. In Proceedings of the 6th

OOPSLA Workshop on Domain-Specific Modeling (DSM’06), pp. 185-196, 2006.

5

(Domain-Specific) Modelling Language Engineering

DS(V)M Example in Software Domain
smart phones, the application

MetaEdit+ (www.metacase.com)

6

(Domain-Specific) Modelling Language Engineering

DS(V)M Example: smart phones,
the Domain-Specific model

7

(Domain-Specific) Modelling Language Engineering

Model-Based Development:
Modify the Model
(e.g., based on feature model of product family)

model

model’ app’

apptransformation

transformation

small modification

small modification in model may lead to large change in app
∼ choice of formalism (e.g., Statecharts)

8

(Domain-Specific) Modelling Language Engineering

Model-Based Development:
Modify the Model
(e.g., based on feature model of product family)

model

model’ app’

apptransformation

transformation

small modification

small modification in model may lead to large change in app
∼ choice of formalism (e.g., Statecharts)

8

(Domain-Specific) Modelling Language Engineering

Statecharts

9

(Domain-Specific) Modelling Language Engineering

Model-Based Development:
Modify the Transformation
(e.g., target platform changes, or optimization)

model

model app’

apptransformation

small modification

transformation’

10

(Domain-Specific) Modelling Language Engineering

Can be Multi-Step/Multi-Formalism

11

(Domain-Specific) Modelling Language Engineering

Building DS(V)M Tools Effectively . . .

development cost of DS(V)M Tools may be prohibitive!
⇒ need Modelling Language Engineering

12

(Domain-Specific) Modelling Language Engineering

Dissecting Modelling

13

(Domain-Specific) Modelling Language Engineering

Model Features

14

(Domain-Specific) Modelling Language Engineering

Token Models

15

(Domain-Specific) Modelling Language Engineering

Rôles a Model may Play

16

(Domain-Specific) Modelling Language Engineering

Ontological vs. Linguistic Instantiation

17

(Domain-Specific) Modelling Language Engineering

Language Definition Stack

18

(Domain-Specific) Modelling Language Engineering

Meta-models as Language Definitions

19

(Domain-Specific) Modelling Language Engineering

Meta-hierarchy – OMG’s 4 Layer Architecture

20

(Domain-Specific) Modelling Language Engineering

Dissecting a Modelling Language

21

(Domain-Specific) Modelling Language Engineering

Deciding on terminology

22

(Domain-Specific) Modelling Language Engineering

What’s in a name ? Language

23

(Domain-Specific) Modelling Language Engineering

What’s in a name ? Formalism

24

(Domain-Specific) Modelling Language Engineering

What’s in a name ? Base Formalism

25

(Domain-Specific) Modelling Language Engineering

What’s in a name ? Concrete Language

26

(Domain-Specific) Modelling Language Engineering

What’s in a name ? Concrete Formalism

27

(Domain-Specific) Modelling Language Engineering

Modelling a Modelling Language/Formalism

28

(Domain-Specific) Modelling Language Engineering

Sets of Models

29

(Domain-Specific) Modelling Language Engineering

From now on: use AToM3

30

(Domain-Specific) Modelling Language Engineering

A model in the PacMan Formalism

0Your score

31

(Domain-Specific) Modelling Language Engineering

Modelling Abstract Syntax (meta-model)

Cardinalities:
 - To gridBottomV3: 0 to N
 - From gridBottomV3: 0 to N
 - From pacLinkV3: 0 to N
 - From foodLinkV3: 0 to N
 - From scoreLinkV3: 0 to N
 - To gridLeftV3: 0 to N
 - From gridLeftV3: 0 to N
 - To gridRightV3: 0 to N
 - From gridRightV3: 0 to N
 - To gridTopV3: 0 to N
 - From gridTopV3: 0 to N
 - From ghostLinkV3: 0 to N

gridNodeCenter

Cardinalities:
 - To pacLinkV3: 0 to N

pacmanV3

Cardinalities:
 - To foodLinkV3: 0 to N

pacFoodV3

Attributes:
 - score :: Integer
Actions:
 > create
Cardinalities:
 - To scoreLinkV3: 0 to N

ScoreBoard

Cardinalities:
 - To ghostLinkV3: 0 to N

ghostV3

gridLeftV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridTopV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridBottomV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridRightV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

ghostLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ghostV3: 0 to N

scoreLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ScoreBoard: 0 to N

pacLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacmanV3: 0 to N

foodLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacFoodV3: 0 to N

32

(Domain-Specific) Modelling Language Engineering

Modelling the Scoreboard Entity

33

(Domain-Specific) Modelling Language Engineering

Synthesis of Code for Syntax-Directed Editing
class ScoreBoard(ASGNode, ATOM3Type): # Abstract Syntax only

def __init__(self, parent = None):
ASGNode.__init__(self)
ATOM3Type.__init__(self)
self.graphClass_ = graph_ScoreBoard
self.isGraphObjectVisual = True
self.parent = parent
self.score=ATOM3Integer(0)
self.generatedAttributes = {’score’: (’ATOM3Integer’) }
self.directEditing = [1]

def clone(self):
cloneObject = ScoreBoard(self.parent)
for atr in self.realOrder:
cloneObject.setAttrValue(atr,self.getAttrValue(atr).clone())

ASGNode.cloneActions(self, cloneObject)
return cloneObject

34

(Domain-Specific) Modelling Language Engineering

Meta-modelling: model-instance morphism

name type=String init.value=
tokens type=Integer init.value=0

PNPlace
name type=String init.value=
PNTransition

mapping mapping mappingmapping

place1
0

place2
0

transition

level M2: model

a model of the Petri Net formalism,
an INSTANCE of the Entity Relationship formalism

level M1: data

a Petri Net,
an INSTANCE of the Petri Net formalism

tran2pl

pl2tran

mappingmapping

35

(Domain-Specific) Modelling Language Engineering

Meta-meta-. . . : Meta-circularity

36

(Domain-Specific) Modelling Language Engineering

Sets of Models: Modelling Concrete Syntax

37

(Domain-Specific) Modelling Language Engineering

Modelling Ghost Class Instances Concrete Visual Syntax

38

(Domain-Specific) Modelling Language Engineering

Modelling PacFoodLink Association Concrete Visual Syntax
Get n1, n2 end-points of the link
n1 = self.in_connections_[0]
n2 = self.out_connections_[0]

g1 and g2 are the graphEntity visual objects
g0 = self.graphObject_ # the link
g1 = n1.graphObject_ # first end-point
g2 = n2.graphObject_ # second end-poing

Get the high level constraint helper and solver
from Qoca.atom3constraints.OffsetConstraints
import OffsetConstraints

oc = OffsetConstraints(self.parent.qocaSolver)

The constraints
oc.CenterX((g1, g2, g0))
oc.CenterY((g1, g2, g0))
oc.resolve()

39

(Domain-Specific) Modelling Language Engineering

Synthesize + Customize Buttons model

New Edit New Help

New gridNodeCenter

New pacmanV3 New pacFoodV3 New ScoreBoardNew ghostV3

Note: create vs. execute

40

(Domain-Specific) Modelling Language Engineering

Default generated Buttons code for ghostV3
This method has as parameters:
- wherex: X Pos. in window coordinates where user clicked.
- wherey: Y Pos. in window coordinates where user clicked.
newPlace = self.createNewghostV3 (self, wherex, wherey)\n’))

41

(Domain-Specific) Modelling Language Engineering

Can now build valid PacMan models ?

0Your score

42

(Domain-Specific) Modelling Language Engineering

Model the GUI’s Reactive Behaviour !
in the most appropriate formalism . . . Statecharts

43

(Domain-Specific) Modelling Language Engineering

The GUI’s reactive behaviour in action

challenge: what is the optimal formalism to specify GUI reactive behaviour ?

44

(Domain-Specific) Modelling Language Engineering

Concrete Visual Syntax
G. Costagliola, A. Delucia, S. Orefice and G. Polese.
A Classification Framework to Support the Design of Visual
Languages.
Journal of Visual Languages and Computing, Volume 13, Issue 6,
December 2002, pages 573-600.

45

(Domain-Specific) Modelling Language Engineering

Plex

46

(Domain-Specific) Modelling Language Engineering

Graph

47

(Domain-Specific) Modelling Language Engineering

Connection Types

48

(Domain-Specific) Modelling Language Engineering

Iconic

49

(Domain-Specific) Modelling Language Engineering

Box

50

(Domain-Specific) Modelling Language Engineering

Visual Language Classification

51

(Domain-Specific) Modelling Language Engineering

Hybrid Languages

52

	Concrete Syntax

