Textual Use Case DSL with Sequence Diagram
Transformation

Andrés Carrasco
Andres. Carrasco@Qstudent.uantwerpen. be

University of Antwerp

Abstract

Even though visual languages have been often regarded as better suited for
some Domain Specific Languages (DSL), we explore textual DSLs with the
Xtext framework by creating a DSL for use cases and generating from them
sequence diagrams through a model-to-model transformation and a subsequent
model-to-text transformation with the tools provided by Xtext.

Keywords: textual languages, Xtext, domain specific languages, DSL,
sequence diagrams, use case

1. Introduction

General Purpose Languages (GPL), e.g. Java, are designed for solving any
kind of problem. However, due to their vast scope, in certain domains the solu-
tions can become quite complex. For example, performing a query in a database
in pure Java without using the domain specific language SQL, a big overhead
would be added in parsing and interpreting the data coming out and to the
database. Whereas simply using SQL reduces this overhead completely. SQL is
just one example where a domain specific language (DSL) is more appropriate
than a GPL. Nevertheless, a DSL does not always replace a GPL, as the DSL is
often interpreted or compiled into a GPL. Therefore, the DSL is being utilized
for simplifying the complexity that a GPL might impose on a problem.

Both SQL and Java are textual languages, nevertheless, not all DSL are
textual. Depending on your problem scope, a visual DSL might be better suited
than a textual DSL, in some cases even a mixture of both. However, it is often
argued that visual languages provide a better overview and are preferred above
textual languages, as they are often referred to as more intuitive.

Regardless of their advantages, they both have a set of requirements which
makes the developing of DSLs expensive. Xtext E| is a framework for developing

Lhttp://www.eclipse.org/Xtext/

Preprint submitted to Model Driven Engineering course January 28, 2017



20

25

30

35

40

45

50

55

60

textual GPLs and DSLs, which aids by creating all of the infrastructure and
thus fulfilling all of their requirements.

In this writing, we explore the possibility of creating a textual DSL for use
cases with Xtext. A use case is a technique utilized for analyzing requirements
in software engineering, composed of a list of actions that define the interaction
between actors. Through this list they help discover, and most importantly
document, the functional requirements of a system.

Alongside designing a DSL for use cases, we also explore the possibility to
translate it to a sequence diagram. A sequence diagram is a diagram that shows
the behavior of a system in terms of objects an their ordered interaction between
each other. Utilizing both diagrams, the requirements of the system’s design
could be revised in different formalisms.

In Section [2] we give a short comparison of textual and visual languages.
Next in Section Bl we discuss the creation of a DSL with Xtext. In Section [l
two possible approaches to controlling natural languages are presented. In both
Section [5] and Section [6] the components of use cases and sequence diagrams
are discussed respectively. Afterwards, in Section [7] we discuss our approach
of constructing a DSL and its translation to a sequence diagram. In Section
we give a short example of a use case and its subsequent generated sequence
diagram. Lastly in Section [9] we give our conclusions and future work.

2. Visual vs Textual Languages

In their article Gronninger et al. (2014) [I] argue that textual languages have
the following advantages over visual languages:

1. Content compactness. Gronninger et al. (2014) argue that graphical
languages require more space to convey the same amount of content, thus
when selecting an appropriate language type for a DSL, in which space is
critical, textual languages have a clear advantage.

2. Speed of creation. the authors also argue that current text editor tech-
nologies are more efficient than visual editor technologies, due to their
nature they often constrain the designer, leading to time loss.

3. Integration of Languages. in this point, Gronninger et al. (2014) argue
that integrating different types of languages is easier if they are textual,
as doing so in visual languages leads to a lack of developer efficiency.

4. Speed and quality of formatting. formatting text is a trivial task for
standard formatting algorithms. In contrast to this, formatting a visual
model is not, as depending on the semantics there can be a special layout
thought of, probably requiring a custom layout algorithm.

5. Platform and tool independency. textual languages have the advan-
tage that they can be manipulated by any text editor available, this gives
them a high degree of flexibility, whereas visual languages usually need
their own environment.

6. Version control. the last advantage Gronninger et al. (2014) point out,
is the possibility of using standard version control systems. Version control



65

70

75

80

85

90

95

100

systems are widely used for text, whereas with visual languages they have
not, as they have not proven to be very reliable.

Although some of the previous points seem to be very convincing, in some
cases visual languages might still be a better choice. Whenever deciding between
one or the another, all advantages and disadvantages should be considered, as
to decide on the best type for the proposed DSL.

3. Creating a DSL with Xtext

A DSL requires the ability to read the input text, parse it, process it and
possibly interpret or generate code in a GPL. However, as most programming
languages a DSL also needs to have a good IDE support, syntax highlighting,
continuous background parsing, error markings in the input text, auto-complete
features, hyperlinking between references, and even possibly suggesting quick-
fixes, among other functionalities [2].

As it seems so far, developing a DSL is also quite a task, here is where
Xtext E| comes in handy. Xtext can generate all of the requirements of DSLs
automatically, after specifying grammar rules utilizing their grammar language.
Moreover, Xtext is able to create a compiler from your DSL to any other lan-
guage. Xtext also provides special support for targeting the Java Virtual Ma-
chine through Xbase. In other words, utilizing the Xtext framework, reduces
the overhead of creating a DSL and potentially enabling your DSL to unlock
its full potential. Xtext makes it specially easy, because of their well chosen
default configuration, which usually covers all of the common needs, however it
is completely configurable.

Xtend itself uses a grammar language based on the Eclipse Modeling Frame-
work (EMF). The input grammar is parsed using Another Tool For Language
Recognition (ANTLR). The latter is widely used by programming language like
Java and Python. From the grammar parsed by ANTLR a new linker and
parser are created for the language specified by itself, alongside other popular
IDE features. Creating thus a full blown DSL with IDE support.

4. Controlled Natural Language

Use cases are written using informal communication: with a natural lan-
guage. The use cases resulting from this process usually must be used on human
review processes, resulting to high costs or reduced quality, due to their static
nature [3]. Knauf [3] proposes to control the quality of the natural language
by using templates, also known as boilerplates, therefore removing the need for
human interaction. Li [4], proposes to manually normalize the natural language
for then to be input into a parser. However, this approach still requires manual
labor and might still retain some of the previous mentioned disadvantages to
some degree.

2http:/ /www.eclipse.org/Xtext /



105

110

115

5. Use Case

A use case is typically composed of the following components:

This,

Name: usually a phrase that grasps the goal of the primary actor.
Scope: defines the scope of the use case.

Granularity Level: defines the level of detail of the use case. There
are usually three granularity levels. The summary level defines actions
that encompass multiple lower-level use cases. While the user goal level
specifies the actions of an actor. Lastly, the subfunction level specifies
actions that support the user goal level use case.

Intention: specifies the intention of the primary actor in their context.
Multiplicity: specifies the number of different components.
Actors: are the entities that interact within or with the system.

Main Success Scenario: define the sequence of interaction steps that
conforms to a successful scenario.

Extensions & Exceptions: define additional or alternative interaction
steps for the mains success scenario.

however, is only a typical format for use cases, there are different formats

that include different components.

6. Sequence Diagram

www webseqguencediagrams.com

Figure 1: An Example Sequence Diagram



120

125

130

135

140

145

A Sequence Diagram is composed by the representation of entities interact-
ing with each other. An example can be seen in Figure [l They are composed
of bores containing the name of the entity they represent with a vertical line
representing their lifeline. To show communication between the different en-
tities, an arrow is drawn from one entity to another. These arrows are called
messages and there are two types: a message, represented by an arrow, and a
reply, represented by an arrow with a striped line. Both types of arrows can be
seen in Figure[2] the message up top and reply below. Moreover, when an arrow
has an open arrow head, it is meant to be asynchronous. All other arrows are
meant to be synchronous.

Figure 2: Different types of synchronous messages

Alongside the messages, there are different types of constructs called com-
bined fragments. These are drawn as a square above the lifelines of the entities,
with a square on the upper left corner with the type as shown in Figure[3] There
are many different types of combined fragments, however, we will only focus on
the following:

e Alt: this operator represents two or more alternatives of interactions,
on each of the alternatives a guard condition is set to specify when this
alternative fragment is to be active.

e Opt: this operator represent optional interactions, this also has a guard
condition which specifies when is this fragment active.

e Loop: this operator represents iterative interactions which repeat until
the guard condition is not met anymore.

Other constructs such as break, seq, par, strict, etc. are not being considered
in this writing.

6.1. Transformation to WebSequenceDiagrams.com Syntax

Our goal is to eventually transform to a sequence diagram, for this we need
an engine that can generate visual representations of a sequence diagram given a
specification. For this we selected the WebSequenceDiagrams.com| tool. Unfor-
tunately, this tool does not support all of the constructs of a sequence diagram,
therefore we only created transformation for the supported components.

Shttps:/ /www.websequencediagrams.com/



150

155

160

165

A B

ebsequencediagrams.com

Figure 3: The Opt combined fragment

7. Creating the Use Case DSL with Xtext

{Entity}

{Condition} H THEN H {Clause}

‘ {INT}.

{Verb} {Predicate}?

{Entity} {Condition}
or

IT RESPONDS

Figure 4: The proposed grammar for an interaction step.

could {Verb} itself

In order to create the DSL with Xtext, a grammar must be designed that will
parse the use case format specified in Section[§] The grammar will be conformed
of all of the elements specified in the format. However, a distinction between
the primary actors and secondary actors will be made with the keyword actor
and secondary respectively.

The workflow depicted in Figure [5| will be implemented, consisting of a pars-
ing step, a model-to-model (M2M) transformation step, and finally a model-to-
text (M2T) code generation step.

The first step in implementing this workflow would be to specify a grammar,
using Xext’s grammar language. The most interesting piece of this grammar,
would be the steps in the scenario, as here will the boilerplates be used to con-
trol the natural language. A representation of the proposed grammar can be
seen in Figure [l In the figure, the following constructs can be seen: {INT},
{Condition}, {Verb}, {Entity}, {Predicate}, and {Clause}. Each of them
represent a placeholder for different types of data. {INT} represents a place-
holder for an integer, whereas {Predicate}, {Verb} and {Condition} represent
a placeholder for a string. In contrast to this, the placeholder Entity expects
either an actor or a secondary actor, which in turn has to be specified before in



170

175

180

Generates M2M
Xtext T DSL Metamodel SD Metamodel
(Ecore) (Ecore)
g : P
® iinstanceOf 1 instanceOf
@ '
c
8 M2M
DSL instance SD instance
] model (Ecore) model (Ecore)
c
P 3
arser.
' g M2T
Lexer, o

Use Case Text WebSequenceDi
agram Syntax

Figure 5: The proposed workflow.

the grammar. Although, after the verb the keyword itself can be alternatively
used to refer to the same first entity. Lastly, the placeholder Clause expects
any input of a interaction step without the numbering and punctuation at the
end. This allows to have nested constructs within the alt operator for example.

Depending on the sentence construction, the interaction step will be trans-
lated into one of the previously described messages or combined fragments. For
example, the sentence:

3. the System ”informs” Teller ”"that deposit was
successful and waits” until it responds.

Due totheuntil it responds keywords, it will be translated to a BlockingSynchronous

construct. Subsequently it will be translated into the WebSequenceDiagram
syntax, resulting in the Figure@ We will discuss what the BlockingSynchronous
is on the Subsection [7.21

ww . websequencediagrams.com

Figure 6: A BlockingSynchronous transformation example



185

190

195

200

205

7.1. Parsing the input Text

After parsing the use case with the supplied grammar, it is parsed into an
Ecore instance model, specified by a Ecore metamodel. Both of them where
generated automatically by Xtext when specifying the grammar.

7.2. Model-to-Model Transformation

Once the Ecore instance model is made available, we perform a model-to-
model transformation. For this, we specified a target model with Ecore, repre-
senting the components of a sequence diagram. The target model can be seen
in Figure[7]

v f# sequencediagrammodel
E ParentClause
w B Clause -> ParentClause
= Mumber: Elnt
= Actor: EString
= Verb : EString
= Sublctors: EString
= Predicate : EString
E BlockingSynchronous -> Clause
H Synchronous -> Clause
w E Opt-> Synchrenous
= Condition : EString
H Loop -> Synchronous
= Condition : EString

€

€

EH ConditienalClause -> ParentClause
= Condition : EString
= thenClause : Clause

E AltSingle -> ConditionalClause

EH Alt-> ConditionalClause
= elseClause: Clause

€

Figure 7: The target model grammar in Ecore.

Each of the components of the target Ecore model represent a specific con-
struct of the sequence diagram. For instance, the BlockingSynchronous repre-
sents the construct seen in Figure @ Similarly, Synchronous represents any
simple message being sent from entity to entity, while Loop, Opt, Alt and
AltSingle all represent the construct their name suggests. The AltSingle
is meant to be used on an alt without an alternative, i.e. it only has one guard
condition and interaction steps.

In order to perform the model-to-model transformation, the parser for the
use case grammar had to be programmatically requested and subsequently trans-
formed. To achieve this in Xtext, two classes were written: UseCaseM2M. java
and UseCaseToSequenceDiagram.xtend. The Java class was utilized to tra-
verse the parsed use case model, and implement the logic of the transformation
to the Sequence Diagram model. To achieve this, method calls from the Xtend



210

215

220

225

230

class were utilized, which depending on the method called instantiates Ecore
objects with the given parameters, essentially performing the model-to-model
transformation.

ww websequencediagrams.com

Figure 8: The BlockingSynchronous visual representation.

7.3. Code Generation

As a last step, the given sequence diagram Ecore model will be generated
into the syntax of WebSequenceDiagram.com. To achieve this, through the
UseCaseDSLGenerator.xtend a code generation model-to-text method is imple-
mented, which essentially creates the syntax depending on the Ecore instances.
For the user’s ease, a context menu entry was added when right clicking the use
case editor, which upon selecting, all of the workflow will be performed and the
resulting code persisted in the file /src-gen/generated.seq.

8. Example

In this section, we show an example of a written use case and its translation
to a sequence diagram:

useCase: " Deposit Money”

scope: "Bank Accounts and Transactions System?”

actor: Teller

secondary: System

intention: ”"The intention of the Client is to deposit
money on an account.

Clients do not interact with the system directly; instead

, for this use case,
a Client interacts via a Teller”




235

240

245

250

level: ?User—Goal level”

multiplicity :
"Many Clients may be performing deposits at any one time.
A Client only requests one deposit at a given time.”

scenario: {

1. Teller "requests” the System ”to deposit money
on an account, providing sum of money”.

2. the System ”validates” itself ”the deposit,
credit account with the requested amount,
records details of the transaction”.

3. the System ”informs” Teller ”"that deposit was
successful and waits” until it responds.

The resulting sequence diagram is the following:

www.websequencediagrams.cam

Figure 9: The reslting sequence diagram.

10




255

260

265

270

275

280

9. Conclusions and Future Work

After creating the DSL and the subsequent necessary steps to create a trans-
formation, we were satisfied with the ease Xtext provides for making changes
without breaking functionality. Moreover, knowing that Xtext takes care of all
the infrastructure we could focus entirely on the specification of a functional
DSL and proper translation into a sequence diagram.

However, due to the reduced number of features WebSequenceDiagrams.com
provides, we were unable to present a complete DSL for all of the possible
sequence diagram’s constructs. Notwithstanding, our DSL also came short with
some of the possibilities both sequence diagrams and WebSequenceDiagrams
provided. Such as taking notes, and having multiple alternatives in the Alt
construct. Moreover, due to a problem with the generation of the lexer and
parser, we were unable to include a preposition (the, to, a, etc.) to the actor, as
it didn’t generate any of them when both the actor and secondary had them.
In the future support for this could be added, as well as utilizing a different
sequence diagram tool that supports all of the components sequence diagrams
provide. Lastly, support for more than one nested clause in the if then else
construct should also be provided.

References

[1] H. Gronninger, H. Krahn, B. Rumpe, M. Schindler, S. Volkel, Textbased
Modeling, ArXiv e-printsarXiv:1409.6623.

[2] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend,
Packt Publishing Ltd, 2013.

[3] C. Knauf, Xtext and controlled natural languages for software requirements
(jul 2016).
URL https://blogs.itemis.com/en/xtext-and-controlled-natural-
languages-for-software-requirements-part-1

[4] L. Li, Translating use cases to sequence diagrams, in: Proceedings of the
15th TEEE International Conference on Automated Software Engineering,
ASE ’00, IEEE Computer Society, Washington, DC, USA, 2000, pp. 293—.

11


http://arxiv.org/abs/1409.6623
https://blogs.itemis.com/en/xtext-and-controlled-natural-languages-for-software-requirements-part-1
https://blogs.itemis.com/en/xtext-and-controlled-natural-languages-for-software-requirements-part-1
https://blogs.itemis.com/en/xtext-and-controlled-natural-languages-for-software-requirements-part-1
https://blogs.itemis.com/en/xtext-and-controlled-natural-languages-for-software-requirements-part-1

	Introduction
	Visual vs Textual Languages
	Creating a DSL with Xtext
	Controlled Natural Language
	Use Case
	Sequence Diagram
	Transformation to WebSequenceDiagrams.com Syntax

	Creating the Use Case DSL with Xtext
	Parsing the input Text
	Model-to-Model Transformation
	Code Generation

	Example
	Conclusions and Future Work

