
Creating Domain Specific Languages with Xtext

Andrés Carrasco

Andres.Carrasco@student.uantwerpen.be

University of Antwerp

Abstract

Even though visual languages have been often regarded as better suited for some Domain Specific Languages (DSL), we
explore the possibilities textual languages provide to DSLs. Visual languages do excel in intuitiveness, however, they
come in short in some of the mentioned advantages textual languages do have. Moreover, we also explore the Xtext
framework for creating DSLs and how does it measure with the common requirements of DSLs.

Keywords: textual languages, Xtext, domain specific languages, DSL

1. Introduction

General Purpose Languages (GPL), e.g. Java, are de-
signed for solving any kind of problem. However, due to
their vast scope, in certain domains the solutions can be-
come quite complex. For example, performing a query in5

a database in pure Java without using the domain specific
language SQL, a big overhead would be added in parsing
and interpreting the data coming out and to the database.
Whereas simply using SQL reduces this overhead com-
pletely. SQL is just one example where a domain specific10

language (DSL) is more appropriate than a GPL. Never-
theless, a DSL does not always replace a GPL, as the DSL
is often interpreted or compiled into a GPL. Therefore,
the DSL is being utilized to simplify the complexity that
a GPL might impose on the problem.15

Both SQL and Java are textual languages, neverthe-
less, not all DSL are textual. Depending on your problem
scope, a visual DSL might be better suited than a tex-
tual DSL, in some cases even a mixture of both. However,
it is often argued that visual languages provide a better20

overview and are preferred above textual languages, as
they are often referred to as more intuitive.

2. Visual vs Textual Languages

In their article Grönninger et al. (2014) [1] argue that
textual languages have the following advantages over vi-25

sual languages:

1. Content compactness. Grönninger et al. (2014)
argue that graphical languages require more space
to convey the same amount of content, thus when
selecting an appropriate language type for a DSL, in30

which space is critical, textual languages have a clear
advantage.

2. Speed of creation. the authors also argue that cur-
rent text editor technologies are more efficient than
visual editor technologies, due to their nature they35

often constrain the designer, leading to time loss.

3. Integration of Languages. in this point, Grönninger
et al. (2014) argue that integrating different types of
languages is easier if they are textual, as doing so
in visual languages leads to a lack of developer effi-40

ciency.

4. Speed and quality of formatting. formatting
text is a trivial task for standard formatting algo-
rithms. In contrast to this, formatting a visual model
is not, as depending on the semantics there can be a45

special layout thought of, probably requiring a cus-
tom layout algorithm.

5. Platform and tool independency. textual lan-
guages have the advantage that they can be manip-
ulated by any text editor available, this gives them50

a high degree of flexibility, whereas visual languages
usually need their own environment.

6. Version control. the last advantage Grönninger
et al. (2014) point out, is the possibility of using
standard version control systems. Version control55

systems are widely used for text, whereas with visual
languages they have not, as they have not proven to
be very reliable.

Although some of the previous points seem to be very
convincing, in some cases visual languages might still be60

a better choice. Whenever deciding between one or the
another, all advantages and disadvantages should be con-
sidered, as to decide on the best type for the proposed
DSL.

Preprint submitted to Model Driven Engineering course December 14, 2016



3. Creating a DSL with Xtext65

A Domain Specific Language requires the ability to
read the input text, parse it, process it and possibly in-
terpret or generate code in a GPL. However, as most pro-
gramming languages a DSL also needs to have a good IDE
support, syntax highlighting, continuous background pars-70

ing, error markings in the input text, auto-complete fea-
tures, hyperlinking between references, and even possibly
suggesting quickfixes, among other functionalities [2].

As it seems so far, developing a DSL is also quite a task,
here is where Xtext 1 comes in handy. Xtext can generate75

all of the requirements of DSLs automatically, after spec-
ifying grammar rules utilizing their grammar language.
Moreover, Xtext is able to create a compiler from your
DSL to any other language. Xtext also provides special
support for targeting the Java Virtual Machine through80

Xbase. In other words, utilizing the Xtext framework, re-
duces the overhead of creating a DSL and potentially en-
abling your DSL to unlock its full potential. Xtext makes
it specially easy, because of their well chosen default con-
figuration, which usually covers all of the common needs,85

however it is completely configurable.
Xtend itself uses a grammar language based on the

Eclipse Modeling Framework (EMF). The input grammar
is parsed using Another Tool For Language Recognition
(ANTLR). The latter is widely used by programming lan-90

guage like Java and Python. From the grammar parsed
by ANTLR a new linker and parser are created for the
language specified by itself, alongside other popular IDE
features. Creating thus a full blown DSL with IDE sup-
port.95

References

[1] H. Grönninger, H. Krahn, B. Rumpe, M. Schindler, S. Völkel,
Textbased Modeling, ArXiv e-printsarXiv:1409.6623.

[2] L. Bettini, Implementing Domain-Specific Languages with Xtext
and Xtend, Packt Publishing Ltd, 2013.100

1http://www.eclipse.org/Xtext/

2

http://arxiv.org/abs/1409.6623

	Introduction
	Visual vs Textual Languages
	Creating a DSL with Xtext

