
Implementation of a DSL in Papyrus

Dominique Heer
University of Antwerp

Abstract

This paper evaluates Papyrus, a UML2 tool for domain-specific language
modeling. By using an example from the image processing domain, Papyrus’
abilities to serve as a graphical modeling environment are examined. In
detail, UML’s extension mechanisms are exploited to implement a domain-
specific modeling language for creating simple image processing pipelines. In
addition, this project is compared to another project realizing the same DSL
with another tool, JetBrains MPS, a metaprogramming system.

Keywords:
Papyrus, UML, UML Profiles, MPS, Image Processing, DSL, DSML, MDE

1. Introduction

This section gives a brief overview of model-driven engineering and the
problems and challenges that lead to the development of the open-source
graphical modeling environment Papyrus.

1.1. Overview
It should be no surprise that more and more companies integrate model-

driven engineering (MDE) in their software development life cycle, for it has
a number of advantages when compared to other methodologies which focus
on the computing aspects and not on domain models. For example, MDE
captures domain knowledge on a high level of abstraction, and the resulting
models can serve as a documentation. In addition, it is less error-prone and
validation becomes easier because it is executed on the model and not on
code-level.

Email address: dominique.heer@student.uantwerpen.be ()

Preprint submitted to Model Driven Engineering January 29, 2017

As a logical consequence, many modeling languages exist that visualize
the design of a system, with UML (Unified Modeling Language) being the
most prevalent one. Standardized by the Open Management Group (OMG),
UML2 features fourteen different diagram types. However, it has been found
that for some applications UML is too general, and further specification and
adaption is needed. To support this, UML profiles (see 2.4) have been
added. Profiles allow users to extend the meta-model of UML, thus creating
new elements suitable for specific domains.

Furthermore, many tools exist that aim to support the MDE development
process. However, in the last 25 years, it turned out that not a single com-
pany was able to build a MDE tool which captures all requirements needed
by their customers. In addition, researchers work with their own tools, while
companies use proprietary platforms. This leads to the fact that technology
and knowledge exchange becomes unnecessarily difficult. At last, most com-
mercial tools do not offer sufficient support for DSMLs (Bordeleau (2014)).

To tackle the problems described above, CEA, Ericsson and other com-
panies have worked together to build an open source modeling tool called
Papyrus which is based on the Eclipse platform. Although the main focus of
Papyrus is UML modeling, it can be customized in various ways (see section
2). In this paper, Papyrus’ abilities to serve as a graphical modeling envi-
ronment for a specific domain is explored and evaluated. In detail, a DSL
(domain-specific language) for image processing pipelines is implemented (see
3 and 4). In section 5, the experiences made are then compared to another
project which focused on the implementation of the same DSL in another
tool, MPS1

1.2. Related Work
The idea to implement a domain-specific language for image processing

pipelines is not new: in Hartmann et al. (2015), IPOL, a DSL for image
processing applications, is described. IPOL is a textual language based on
XML. It allows the user to specify the complete pipeline, that is, images
sources (sensors), processing blocks, and a target display (sinks). By ab-
stracting the development of a pipeline, the design becomes language- and
hardware-independent and thus can be easier analyzed and maintained.

1https://www.jetbrains.com/mps

2

https://www.jetbrains.com/mps
https://www.jetbrains.com/mps

Furthermore, Membarth et al. (2016) implemented HIPAcc, a DSL em-
bedded in C++ for describing image processing algorithms. They found that
developers oftentimes have difficulties choosing the right programming lan-
guage, especially when it comes to parallel computation, and therefore a DSL
for modeling image processing algorithms would be a compelling solution.
In addition, they implemented a source-to-source compiler which translates
from the DSL to the target architecture.

Profiles in UML have also been broadly discussed. Fuentes-Fernández
and Vallecillo-Moreno (2004) give a short and informative introduction to
UML Profiles with special focus on the extension mechanisms and how to
use them. Accordingly, Atkinson and Kühne (2002) describe some flaws of
the UML extension mechanism and how to overcome them.

2. Papyrus

In the following sections, the Papyrus tool is introduced.

2.1. Overview
Within the Eclipse project, a variety of tools exist that address the de-

velopment of domain-specific languages, such as Sirius2, Xtext3 and, in a
broader sense, Papyrus. Whereas Sirius allows to easily create graphical
modeling workbenches, and Xtext supports the development of text-based
DSLs, Papyrus on the other hand is primarily used for UML2 modeling,
since it implements 100% of the OMG specification. However, by making
use of UML profiles (see 2.4), it can be extended and diagrams can be cus-
tomized. In addition, Papyrus supports code generation from UML diagrams
2.5.

2.2. History
As described in section 1.1, most commercial modeling tools did not meet

all the requirements of the users. Therefore, CEA List, a French research in-
stitute, started to develop Papyrus, but soon other companies showed interest
in the collaborative development of a modeling tool. In 2008, a proposal was
submitted to the Eclipse foundation with the goal to implement Papyrus on

2http://www.eclipse.org/sirius
3http://www.eclipse.org/Xtext

3

http://www.eclipse.org/sirius
http://www.eclipse.org/Xtext
http://www.eclipse.org/sirius
http://www.eclipse.org/Xtext

top of the Eclipse framework. According to the proposal4, this was a natu-
ral choice because Eclipse is open source, offers powerful frameworks (EMF,
GMF, see 2.3) and has a vibrant user community.

In October 2016, Papyrus version 2.0.1 was released.

2.3. Architecture
Papyrus is a sub-project of Eclipse’s Model Development Tools (MDT)

based on the Graphical Modeling Framework (GMF) and the UML2 meta-
model. The latter is in turn based on EMF (Eclipse Modeling Framework),
a framework which allows to model a data model and generate code from it.
EMF models can be constrained by using OCL, the Object Constraint Lan-
guage. GMF on the other hand provides components for developing graphical
modeling editors based on EMF.

Figure 1 gives a graphical overview of Papyrus’ architecture.

Figure 1: The Papyrus architecture

2.4. UML Profiling
To uphold its reputation as a flexible graphical modeling environment,

Papyrus has to allow users the creation of custom DSLs for specific domains.
In some domains, it is not necessarily useful to use the UML standard, but

4http://wiki.eclipse.org/MDT/Papyrus-Proposal

4

http://wiki.eclipse.org/MDT/Papyrus-Proposal
http://wiki.eclipse.org/MDT/Papyrus-Proposal

rather a specialized language. For these cases, UML features extension mech-
anisms to customize and extend the standard diagrams. These mechanisms
are defined as follows:

1. stereotypes: allow the user to extend UMLs vocabulary by altering the
meaning, syntax and visual representation of UML model elements

2. constraints: impose restrictions on the metamodel
3. tagged values: further enrich stereotypes by adding attributes

These three mechanisms describe a so-called UML profile. Papyrus has exten-
sive support for UML profiles. For example, the SysML modeling language5,
which is based on UML and focuses on systems engineering, was implemented
within Papyrus by using UML profiles.

Fuentes-Fernández and Vallecillo-Moreno (2004) provides a more detailed
overview and example-based introduction to UML profiles.

In the scope of this project, profiles will be used to add new diagram
types to support the image processing pipeline DSL (see 3 and 4.1).

2.5. Code Generation
Despite its ability to edit UML and SysML diagrams, Papyrus also allows

the user to automatically generate code. As of writing this, Java and C++
are integrated, with support for Ada and C planned. In addition, custom
code generators can be added. These generators are developed in the Xtend6

programming language, a Java dialect which aims to improve Java by adding
both new functionality (macros, powerful switch statements, operator over-
loading, etc) and by removing boiler plate. Xtend compiles into Java code
and can therefore be used together with any Java library. Furthermore, it
seamlessly integrates into the Eclipse IDE.

In addition to Xtext, plugins exist that make it easy to add custom code
generators. Within the Eclipse project, Acceleo7 is a famous choice, because
it built on top of EMF and OCL, and implements the OMG standard for
model-to-text generation (MOFM2T8). Acceleo supports code generation for
every metamodel which is based on EMF, and comes with a powerful editor.

5http://www.eclipse.org/papyrus/components/sysml
6http://www.eclipse.org/xtend
7http://www.eclipse.org/acceleo
8http://www.omg.org/spec/MOFM2T/1.0

5

http://www.eclipse.org/papyrus/components/sysml
http://www.eclipse.org/xtend
http://www.eclipse.org/acceleo
http://www.omg.org/spec/MOFM2T/1.0
http://www.eclipse.org/papyrus/components/sysml
http://www.eclipse.org/xtend
http://www.eclipse.org/acceleo
http://www.omg.org/spec/MOFM2T/1.0

The ultimate goal of this project is to implement a model-to-code gener-
ator for the image processing pipeline DSL. Whether Xtend or a plugin like
Acceleo are more practicable is discussed in 4.2.

3. Case study

3.1. The Domain-Specific Language
For the case study, a simplified image processing pipeline was chosen.

Such a pipeline consists of exactly one input image, several processing blocks,
exactly one output image and multiple connectors which connect the ele-
ments. Processing blocks can be for example image scaling, noise reduction,
filters, effects or colorspace conversions. Hereby, it is possible that a pro-
cessing block has several parameters. Every processing block has exactly one
incoming and one outgoing connection. A source image has zero incoming
and one outgoing connection, while an output image has only one incom-
ing connection and no outgoing connections. Technically, such a pipeline is a
linked list, with nodes representing the components (source image, processing
blocks, target image), and pointers representing the data flow.

Figure 2 shows an example for a graphical representation of an image
processing pipeline. This pipeline features an input image, two processing
blocks and an output image.

Figure 2: A simple example for an image processing pipeline

Hereby, the following restrictions are imposed on the image processing
pipeline DSL:

• there is exactly one input image

• there is exactly one output image

• the input and output images are of type JEPG or PNG

• at least one processing block must be present

• at least three processing blocks have to be implemented

6

Purpose of this case study is to serve as an example for implementing a
DSL in Papyrus. In addition, the same DSL is implemented in the scope of
another project by using Jetbrain’s MPS tool. Both tools, MPS and Papyrus,
will be compared in section 5 based on the experiences made.

3.2. Generated Code
The model-to-text transformation has to generate valid Java source code

which can be compiled and executed. The usage of external libraries for
image reading, writing and manipulation is allowed. The resulting code has
to preserve the order of the processing blocks and must take their parameters
defined in the DSL into account.

The generated code for the example shown in figure 2 could hence look
like this:

1 public class Pipe l i n e {
2
3 private stat ic void saveImage (
4 Image image , S t r ing f i l ename) {
5 // TODO: implement
6 }
7
8 public stat ic void main (St r ing [] a rgs) {
9 Image image = new Image (" input . jpg ") ;

10 F i l t e r f i l t e r ;
11 f i l t e r = new Gray s c a l eF i l t e r () ;
12 image = f i l t e r . apply (image) ;
13 f i l t e r = new B lu rF i l t e r (BlurMethod .BOX) ;
14 image = f i l t e r . apply (image) ;
15 saveImage (image , " output . jpg ") ;
16 }
17 }

7

4. Implementation in Papyrus

This section explains the implementation of the graphical DSML in Pa-
pyrus. The implementation process can be divided into two separate tasks:
define the UML profile, and develop a code generator which automatically
generates valid Java code from a given UML model.

4.1. UML profile
Papyrus makes it easy to create profiles. When adding a new Papyrus

model, the user can choose between a UML model and a UML profile 3.

Figure 3: Papyrus allows the user to either create UML models or UML profiles

The profile editor then features several components that can be added,
with profiles, packages, stereotypes, meta-class imports, constraints, exten-
sions and generalizations being the most important ones.

For the image processing DSML, the UML class diagram was chosen to
be extended. It features Class objects, which translate to input images,
processing blocks and output images, as well as Realization edges, which
translate to the connections between the images and processing blocks in the
custom modeling language.

To extend the Class meta-class, it has to be imported. Then, a stereotype
is added and connected to the meta-class by using an extension relationship
(see figure 4).

8

Figure 4: A new diagram type called Source is added; it extends the UML Class meta-class

Every stereotype can be enriched with tagged values (called properties in
Papyrus). Due to some limitations, these properties can only be Booleans,
Integers, Real numbers or Strings. Custom enumerations can be defined,
though, but they are not saved in the corresponding UML model file (which
is needed later for code generation).

In addition, constraints can be defined in the Object Constraint Language
(OCL). These constraints can either be written in a separate file and added
to a stereotype, or they can be directly added in the editor. Whether or not
a model violates a constraint can then be checked by validating it.

The complete UML profile for the image processing DSML can be seen
in figure 5. It is also possible to define custom icons and shapes for each
stereotype, thus altering the visual representation of a UML element.

9

Figure 5: The complete UML profile for the custom DSML, featuring stereotypes, at-
tributes and constraints

Section 4.3 describes how to add more processing blocks.

4.2. Code Generator
As explained in section 2.5, there are two ways of generating code: by

either using Papyrus’ internal code generation facility, or by using a plugin.
The former would require the development of a Papyrus plugin-in that adds
a new menu entry as well as a code generator written in the Xtend program-
ming language. This approach is appropriate if one wants to add a code
generator for a new programming language (apart from C/C++ and Java
since Papyrus already supports those), and is very powerful and flexible.

Using a plugin like Acceleo, however, can be less cumbersome. Acceleo is
tailored for simple code generation and uses a template-based approach, thus
allowing the user to generate any textual language from a UML model. Set-
ting up a project for a code generator is a matter of minutes. Therefore, and
also because of lacking documentation about the Xtend approach, Acceleo
was chosen.

To start the development of the model-to-text generator, the Acceleo
plugin has to be installed first. It features a custom Eclipse perspective

10

and allows the creation of a new Acceleo project. When creating a new
project, the metamodel of the input model has to be specified (Eclipse’s
implementation of the UML2 standard in the case of the image processing
DSL). In addition, the input of the template has to be defined, which is in
this case the whole model. Figure 6 gives an overview.

Figure 6: The definition of a new Acceleo project for the image pipeline DSL

After the project was created, the template has to be defined. In Acceleo,
square brackets mark the beginning and the end of an expression that has to
be evaluated, whereby expressions are based on the OCL language.

The following listing shows a code snippet of the template and demon-
strates how to iterate over all classes in the model, and if the applied stereo-
type is of type Source, a function is called that generates Java code for loading
an image.

11

1 [module generate (’ http ://www. e c l i p s e . org /uml2 /5 . 0 . 0 /UML’)]
2 [template pub l i c generateElement (model : Model)]
3
4 [f o r (c : Class | model . eAl lContents (Class))]
5 [f o r (s t e r eo type : Stereotype | c . ge tApp l i edSte reotypes ())]
6 [i f (s t e r eo type . name = ’ Source ’)]
7 [c . genCodeLoadImage () /]
8 [/ i f]
9 [/ f o r]

10 [/ f o r]

The fully developed code generator works as follows: at first, a Java file
called Pipeline.java is generated. It contains a single class which contains in
turn the main function. Then, the Java code for loading the source image
is generated. Afterwards, all connections between the blocks are traversed,
and, depending on the type of the processing block, the respective Java code
is generated. Hereby, an image processing library is used 9 that features
several filters. At last, code for writing the output file is generated.

To run the code generator, a new runtime configuration has to be added.
Here, the input model can be specified, which is the UML file of a pipeline
model created by a user.

4.3. Extensibility
An important question is how easy it is to extend the existing DSML.

For example, if a new processing block has to be added, which are the steps
that have to be taken?

In short, the following procedure must be undergone every time a new
element should be added to the DSML:

1. extend the image pipeline UML profile
2. extend the code generator
3. add the new element to a model

In detail, the UML profile is extended by adding another stereotype. As
an example, a processing block called DiffuseFilter is to be added to the
DSML. As can be seen in figure 7, a new stereotype was defined featuring an

9http://www.jhlabs.com/ip/filters

12

http://www.jhlabs.com/ip/filters

integer property called strength and an OCL constraint validDiffuseSpecifi-
cation that checks if the strength property is valid, that is, if it is a positive
integer. In addition, the new element extends the UML metaclass Class.

Figure 7: A new element is added to the DSML

As a next step, the code generator is adapted in a way so that it supports
code generation for the new element. Fortunately, this process is quite easy,
because it only requires to add another else if statement:

1 . . .
2 [e l s e i f (s t e r e o type . name = ’ Di f fu se ’)]
3 System . out . p r i n t (" Applying D i f f u s e F i l t e r . . . ") ;
4 f i l t e r = new D i f f u s e F i l t e r () ;
5 f i l t e r . s e t S c a l e ([c l a z z . getValue (
6 c l a z z . getAppl i edStereotype (’ ImagePipe l ine : : D i f fu se ’) ,
7 ’ s t rength ’) /]) ;
8 image = f i l t e r . f i l t e r (image , nu l l) ;
9 System . out . p r i n t l n (" done ") ;

10 [/ i f]
11 . . .

In line 4, the DiffuseFilter is created. In line 5, the strength attribute of
the stereotype is passed as an argument to the setScale function of the filter.

13

Finally, the filter is applied.
The last step consists of adding the new element to a model. First, an

UML class object is added to the model and the stereotype is applied (see
figure 8). Then, the new processing block is connected to the other pipeline
elements by using Realiztion arrows (see figure 9). The Connector stereotype
is in turn applied to the arrows.

Figure 8: The DiffuseFilter stereotype is added to the UML class object

Figure 9: The diffuse filter is added to a pipeline model

14

5. Comparison with MPS

In this section, the experiences made with Papyrus are compared to the
experiences made with another tool, Jetbrains MPS, which was used in an-
other project to implement the same image processing DSL.

5.1. Tool complexity
This section deals with the question of how difficult the tools were to

install, setup and use.
The Papyrus project provides compressed packages to download for Win-

dows, Linux and Mac OSX. No installation is needed, the tool can immedi-
ately be used after downloading. Since it is based on the Eclipse platform,
it resembles the famous Eclipse Java IDE very much, making it easy and
intuitive to use.

While there exist many tutorials about how to get started with UML
modeling, extensive documentation about how to implement custom DSLs is
missing. Fortunately, a user guide describes the definition of UML profiles,
but does not go into greater detail.

Also, documentation about how to extend or create a new code generator
is outdated. On the positive side, however, there is a vibrant community
that provides a lot of information in the official forums.

JetBrains MPS on the other hand is easy to install, also implemented
in Java, and a comprehensive and official documentation exists as well as
numerous screencasts and tutorials to guide the beginner through the com-
plete process of defining a new language. One of its distinctive features is
the projectional editor. Such an editor manipulates the abstract syntax tree
directly rather than the concrete syntax. This might cause initial confusion,
but is nowadays considered mature enough to be used productively.

5.2. Tool scope
This section deals with the question of what the tools are capable of.
Although Papyrus is mainly regarded as a tool for UML2 modeling, it

is possible to create graphical DSLs for a lot of different domains. However,
when using the UML profiles approach, these DSLs have to be abstracted
from UML. In addition, by using plugins like Acceleo, code generation for al-
most any programming language is possible. By developing a plugin, Papyrus
can be turned into a workbench explicitly tailored to the DSL.

15

MPS, on the other hand, is a language workbench and mainly provides
support for textual domain-specific modeling languages, although graphical
constructs are possible. The mbeddr10 project is a good example. In addition,
only Java is natively supported as a target language for code generation.

5.3. Usability of the DSL
This section elaborates on the question of how usable the developed DSLs

are, that is, how easy it is for users to create models in this language.
The most significant difference between the DSL created with Papyrus

and the one created with MPS is that the former is graphical, while the
latter is textual (see figure 10). Intuitively, one would prefer a graphical DSL
to a textual language for the domain of image processing.

However, without a plugin which turns Papyrus into a workbench for the
DSL, it is cumbersome for users to actually use the DSL. For every element,
the stereotype has to be applied manually.

Figure 10: An example of how a pipeline model looks in the DSL implemented in MPS

The DSL implemented in MPS on the other side is, despite of the fact that
it is text-based, easy to use and to understand. Hence, it is not considered a
significant drawback that is is not graphical.

5.4. Extensibility of the DSL
In this section, the extensibility of the DSLs is discussed: how easily can

the language be extended with additional elements?
Section 4.3 already discussed the extensbility of the DSL implemented in

Papyrus. To summarize, it is easy to add new elements to the language: a
new stereotype has to be defined, and the code generator template has to be
adjusted.

10http://mbeddr.com

16

http://mbeddr.com
http://mbeddr.com

To add a new concept in MPS, the abstract syntax has to be defined first.
This is done by adding a new concept (similar to a class in object-oriented
programming) to the language which then is enriched by an editor for the
concrete syntax. Finally, a template for the generator has to be written and
augmented with macros.

It can be seen that the process of adding new elements to the DSLs is
quite similar in both Papyrus and MPS.

5.5. Summary
Both Papyrus and MPS are useful tools for creating domain specific lan-

guages. Obviously, the main factor when it comes to the decision about which
tool to use is whether a graphical or a textual DSL is needed. In addition,
it is easier in MPS to come up with a tailored workbench for the DSL since
it provides to the user a powerful editor. In Papyrus, on the other side, a
plugin has to be developed first.

17

6. Conclusion and Future Work

In this paper, the graphical modeling tool Papyrus was evaluated by cre-
ating a custom DSML for a simple image processing pipeline. First, the
DSML itself was specified. Then, the language was implemented by means
of UML profiles, making use of stereotypes, attributes and constraints. At
last, a code generator was developed which performs a model-to-text trans-
formation. The result is valid Java code which can be compiled and executed.

Papyrus has proven to be a useful and powerful tool for creating domain-
specific modeling languages. Although its main purpose is to serve as a UML
modeling tool, it can be customized and extended. In addition, it has been
shown that a custom DSL can easily be extended 4.3.

However, as Papyrus main purpose is not the creation of custom DSLs,
there might exist tools which are more suitable for the creation of custom
graphical modeling workbenches (Eclipse Sirius11, DiaGen12, Tiger13).

The comparison with JetBrains MPS showed that both tools are suitable
for the task of creating DSLs. MPS, on the one side, is primarily used
for textual languages and can be turned easily into a workbench for the
implemented DSL. On the other hand, Papyrus is to be preferred for graphical
languages and supports code generation for multiple programming languages.
It can also be customized with plugins.

Future work might include the development of a Papyrus plugin which
bundles the implemented UML profile 4.1 and the code generator 4.2 in a
way so that a ready-to-use graphical modeling workbench results. By using
such a plugin, the user would be presented with a palette containing graphical
representations of the building blocks of the DSML. The development of such
a plugin was started but not finished (see figure 11).

11http://www.eclipse.org/sirius
12https://www.unibw.de/inf2/DiaGen
13http://www.user.tu-berlin.de/o.runge/tfs/projekte/tiger

18

http://www.eclipse.org/sirius
https://www.unibw.de/inf2/DiaGen
http://www.user.tu-berlin.de/o.runge/tfs/projekte/tiger
http://www.eclipse.org/sirius
https://www.unibw.de/inf2/DiaGen
http://www.user.tu-berlin.de/o.runge/tfs/projekte/tiger

Figure 11: A Papyrus plugin could bundle the UML profile and the code generator so that
the user can choose the Image Processing Pipeline DSML

19

7. References

Atkinson, C., Kühne, T., Jul. 2002. Profiles in a strict metamodeling frame-
work. Sci. Comput. Program. 44 (1), 5–22.

Bordeleau, F., 2014. Model-based engineering: A new era based on papyrus
and open source tooling. In: OSS4MDE@MoDELS.

Fuentes-Fernández, L., Vallecillo-Moreno, A., 2004. An introduction to uml
profiles.

Hartmann, C., Reichenbach, M., Fey, D., 2015. Ipol - a domain specific lan-
guage for image processing applications. Proceedings of the International
Symposium on International Conference on Systems (ICONS 2015), 40–43.

Membarth, R., Reiche, O., Hannig, F., Teich, J., K"orner, M., Eckert, W.,
2016. Hipacc: A domain-specific language and compiler for image pro-
cessing. IEEE Transactions on Parallel and Distributed Systems 27 (1),
210–224.

20

	Introduction
	Overview
	Related Work

	Papyrus
	Overview
	History
	Architecture
	UML Profiling
	Code Generation

	Case study
	The Domain-Specific Language
	Generated Code

	Implementation in Papyrus
	UML profile
	Code Generator
	Extensibility

	Comparison with MPS
	Tool complexity
	Tool scope
	Usability of the DSL
	Extensibility of the DSL
	Summary

	Conclusion and Future Work
	References

