
Papyrus

Dominique Heer
University of Antwerp

Abstract

This paper evaluates Papyrus, a UML2 tool for domain-specific language
modeling. By using an example from the image processing domain, Papyrus’
abilities to serve as a graphical modeling environment are examined. In
detail, UMLs extension mechanisms are exploited to implement a domain-
specific modeling language for creating simple image processing pipelines.
In addition, Papyrus is compared to mbeddr, an extensible set of languages
based on C.
Keywords:
Papyrus, UML, UML Profiles, mbeddr, Image Processing, DSL, MDE

1. Introduction

This section gives a brief overview of model-driven engineering and the
problems and challenges that lead to the development of an open-source
graphical modeling environment.

1.1. Overview
It should be no surprise that more and more companies integrate model-

driven engineering (MDE) in their software development life cycle, for it has
a number of advantages when compared to other methodologies which focus
on the computing aspects and not on domain models. For example, MDE
captures domain knowledge on a high level of abstraction, and the resulting
models can serve as a documentation. In addition, it is less error-prone and
validation becomes easier because it is executed on the model and not on
code-level.

Email address: dominique.heer@student.uantwerpen.be ()

Preprint submitted to Model Driven Engineering December 14, 2016

As a logical consequence, many modeling languages exist that visualize
the design of a system, with UML (Unified Modeling Language) being the
most prevalent one. Standardized by the Open Management Group (OMG),
UML2 features fourteen different diagram types. However, it has been found
that for some applications UML is too general, and further specification and
adaption is needed. To support this, UML profiles (see 2.4) have been
added. Profiles allow users to extend the meta-model of UML, thus creating
new elements suitable for specific domains.

Furthermore, many tools exist that aim to support the MDE development
process. However, in the last 25 years, it turned out that not a single com-
pany was able to build a MDE tool which captures all requirements needed
by their customers. In addition, researchers work with their own tools, while
companies use proprietary platforms. This leads to the fact that technology
and knowledge exchange becomes unnecessarily difficult. At last, most com-
mercial tools do not offer sufficient support for DSMLs (Bordeleau (2014)).

To tackle the problems described above, CEA, Ericsson and other com-
panies have worked together to build an open source modeling tool called
Papyrus which is based on the Eclipse platform. Although the main fo-
cus of Papyrus is UML modeling, it can be customized in various ways (see
section 2). In this paper, Papyrus’ abilities to serve as a graphical model-
ing environment for a specific domain is explored and evaluated. In detail,
a DSL (domain-specific language) for image processing pipelines is imple-
mented (see 3 and 4). In section 5, the experiences made are then compared
to another project which focused on implementing the same DSL in another
tool, mbeddr1

1.2. Related Work
The idea to implement a domain-specific language for image processing

pipelines is not new: in Hartmann et al. (2015), IPOL, a DSL for image
processing applications, is described. IPOL is a textual language based on
XML. It allows the user to specify the complete pipeline, that is, images
sources (sensors), processing blocks, and a target display (sinks). By ab-
stracting the development of a pipeline, the design becomes language- and
hardware-independent and thus can be easier analyzed and maintained.

1http://mbeddr.com

2

http://mbeddr.com
http://mbeddr.com

Furthermore, Membarth et al. (2016) implemented HIPAcc, a DSL em-
bedded in C++ for describing image processing algorithms. They found that
developers oftentimes have difficulties choosing the right programming lan-
guage, especially when it comes to parallel computation, and therefore a DSL
for modeling image processing algorithms would be a compelling solution.
In addition, they implemented a source-to-source compiler which translates
from the DSL to the target architecture.

Profiles in UML have also been broadly discussed. Fuentes-Fernández
and Vallecillo-Moreno (2004) give a short and informative introduction to
UML Profiles with special focus on the extension mechanisms and how to
use them. Accordingly, Atkinson and Kühne (2002) describe some flaws of
the UML extension mechanism and how to overcome them.

2. Papyrus

In the following sections, the Papyrus tool is introduced.

2.1. Overview
Within the Eclipse project, a variety of tools exist that address the de-

velopment of domain-specific languages, such as Sirius2, Xtext3 and, in a
broader sense, Papyrus. Whereas Sirius allows to easily create graphical
modeling workbenches, and Xtext supports the development of text-based
DSLs, Papyrus on the other hand is primarily used for UML2 modeling,
since it implements 100% of the OMG specification. However, by making
use of UML profiles (see 2.4), it can be extended and diagrams can be cus-
tomized. In addition, Papyrus supports code generation from UML diagrams
2.5.

2.2. History
As described in section 1.1, most commercial modeling tools did not meet

all the requirements of the users. Therefore, CEA List, a French research in-
stitute, started to develop Papyrus, but soon other companies showed interest
in the collaborative development of a modeling tool. In 2008, a proposal was
submitted to the Eclipse foundation with the goal to implement Papyrus on

2http://www.eclipse.org/sirius
3http://www.eclipse.org/Xtext

3

http://www.eclipse.org/sirius
http://www.eclipse.org/Xtext
http://www.eclipse.org/sirius
http://www.eclipse.org/Xtext

top of the Eclipse framework. According to the proposal4, this was a natu-
ral choice because Eclipse is open source, offers powerful frameworks (EMF,
GMF, see 2.3) and has a vibrant user community.

In October 2016, Papyrus version 2.0.1 was released.

2.3. Architecture
Papyrus is a sub-project of Eclipse’s Model Development Tools (MDT)

based on the Graphical Modeling Framework (GMF) and the UML2 meta-
model. The latter is in turn based on EMF (Eclipse Modeling Framework),
a framework which allows to model a data model and generate code from it.
EMF models can be constrained by OCL, the Object Constraint Language.
GMF on the other hand provides components for developing graphical mod-
eling editors based on EMF.

Figure 1 summarizes the information given above.

Figure 1: The Papyrus architecture

2.4. UML Profiling
To uphold it’s reputation as a flexible graphical modeling environment,

Papyrus has to allow the user to create custom DSLs for specific domains.
In some domains, it is not necessarily useful to use the UML standard, but

4http://wiki.eclipse.org/MDT/Papyrus-Proposal

4

http://wiki.eclipse.org/MDT/Papyrus-Proposal
http://wiki.eclipse.org/MDT/Papyrus-Proposal

rather a specialized language. For these cases, UML features extension mech-
anisms to customize and extend the standard diagrams. These mechanisms
are defined as follows:

1. stereotypes: allow the user to extend UMLs vocabulary by altering the
meaning, syntax and visual representation of UML model elements

2. constraints: impose restrictions on the metamodel
3. tagged values: further enrich stereotypes by adding attributes

These three mechanisms describe a so-called UML profile. Papyrus has exten-
sive support for UML profiles. For example, the SysML modeling language,
which is based on UML and focuses on systems engineering, was implemented
within Papyrus by using UML profiles.

Fuentes-Fernández and Vallecillo-Moreno (2004) provides a more detailed
overview and example-based introduction to UML profiles.

In the scope of this project, profiles will be used to add new diagram
types to support the image processing pipeline DSL (see 3).

2.5. Code Generation
Despite its ability to edit UML and SysML diagrams, Papyrus also allows

the user to automatically generate code. As of writing this, Java and C++
are integrated, with support for Ada and C planned. In addition, custom
code generators can be added. These generators are developed in the Xtend5

programming language, a Java dialect which aims to improve Java by adding
both new functionality (macros, powerful switch statements, operator over-
loading, etc) and by removing boiler plate. Xtend compiles into Java code
and can therefore be used together with any Java library. Furthermore, it
seamlessly integrates into the Eclipse IDE.

The ultimate goal of this project is to implement a model-to-code gener-
ator for the image processing pipeline DSL.

3. Case study

3.1. Description
For the case study, a simple image processing pipeline was chosen. Such

a pipeline consists of one or more input images, several processing blocks,

5http://www.eclipse.org/xtend

5

http://www.eclipse.org/xtend
http://www.eclipse.org/xtend

and one or more output images. Processing blocks can be for example image
scaling, noise reduction, filters, effects or colorspace conversion. Technically,
such a pipeline is an acyclic directed graph, with nodes representing the
components (source images, processing blocks, target images), and edges
being the data flow.

Figure 2 shows an example for a graphical representation of an image
processing pipeline. This pipeline features two input images, two processing
blocks and one output image.

Figure 2: A simple example for a image processing pipeline

Purpose of this case study is to serve as an example for implementing
a DSL in Papyrus. In addition, the same DSL is implemented in another
project with the tool embeddr. Both tools, embeddr and Papyrus, will be
compared in section 5 based on the experiences made.

3.2. Language Design

6

4. Implementation in Papyrus

5. Comparison with embeddr

6. Conclusion

7

7. References

Atkinson, C., Kühne, T., Jul. 2002. Profiles in a strict metamodeling frame-
work. Sci. Comput. Program. 44 (1), 5–22.

Bordeleau, F., 2014. Model-based engineering: A new era based on papyrus
and open source tooling. In: OSS4MDE@MoDELS.

Fuentes-Fernández, L., Vallecillo-Moreno, A., 2004. An introduction to uml
profiles.

Hartmann, C., Reichenbach, M., Fey, D., 2015. Ipol - a domain specific lan-
guage for image processing applications. Proceedings of the International
Symposium on International Conference on Systems (ICONS 2015), 40–43.

Membarth, R., Reiche, O., Hannig, F., Teich, J., K"orner, M., Eckert, W.,
2016. Hipacc: A domain-specific language and compiler for image pro-
cessing. IEEE Transactions on Parallel and Distributed Systems 27 (1),
210–224.

8

	Introduction
	Overview
	Related Work

	Papyrus
	Overview
	History
	Architecture
	UML Profiling
	Code Generation

	Case study
	Description
	Language Design

	Implementation in Papyrus
	Comparison with embeddr
	Conclusion
	References

