

Layout in Visual Modelling

Gitte Bluekens

S0110627

Inspired by D. Dubé, Graph Layout for domain-specific modeling (2006)

Table of contents

1. Introduction

2. Spring-embedder algorithm

3. Force-transfer layout algorithm

4. Circle layout algorithm

5. Conclusion

1. Introduction

● Layout algorithms necessary to make visually
attractive models

● Implemented in AToMPM using transformations
● Language = PetriNets

2. Spring-Embedder algorithm

● Edges = springs
● Vertices = rings
● Pre-processing step recommended

→ improve convergence speed and quality
● Combination of repulsion, attraction and gravity

Repulsion algorithm

1. Calculate Manhattan and Euclidean distances

2. Calculate scalar force

3. Multiply force by 2D Manhattan distance vector

● avoid vertex overlaps
● generate large repulsive forces if overlap

Attraction algorithm

1. Calculate Manhattan and Euclidean distances

2. Calculate spring force

3. Multiply force by 2D Manhattan distance vector

● Attract source- and targetvertex of edge

Gravity algorithm

1. Impart on each vector a velocity towards the
gravitational field source

2. Calculate force vector

● Increase area usage efficiently

PetriNet before Spring-Embedder

PetriNet after Spring-Embedder

PetriNet after Spring-Embedder (2)

3. Force-transfer layout algorithm

● Initialization phase
– Set forces acting on each vertex to zero

– Set position of vertex to its center coordinate

● Simulation phase
– Each vertex exerts forces on overlapping neighboring vertices

1. Calculate Manhattan and Euclidean distances
2. Compute scalar force magnitude

● Termination
– No more overlap

– Fixed number of iterations

PetriNet before Force-transfer

PetriNet after Force-transfer

4. Circle layout algorithm

1. Sort vertices topologically

2. Calculate perimeter of circle

3. Calculate interval fraction

● Subgraphs or small graphs
● Preprocessing step for force directed method

PetriNet before Circle layout

PetriNet after Circle layout

5. Conclusion

● Small PetriNets: Circle layout
● Big PetriNets: Spring-Embedder
● Stop overlap: Force-Transfer
● Mostly combination of multiple algorithms

● Layout = fun!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

