
mbeddr

Lucas Heer

Abstract

Embedded systems are widely programmed in the C programming language.
While the major domain of C is efficient low-level code, it has shortcomings
when it comes to safety, testing, maintainability and high-level constructs, all
of them being desirable features in embedded systems development. With the
recent technological advances in domain-specific modeling associated with
domain-specific languages and supporting language workbenches like Jet-
Brains MPS or Xtext, it has become easier to create new or extend existing
languages. This paper gives an overview of mbeddr, an extensible language
and IDE for embedded software development based on the C programming
language implemented in the JetBrains MPS language workbench. In addi-
tion, a simple language from the image manipulation domain will be imple-
mented in MPS to investigate its practicalness. The workflow and results
will be compared with an implementation of the same language in Papyrus
1.

Keywords:
mbeddr, language workbench, JetBrains MPS, domain specific language,
embedded systems, domain specific tooling, modeling, Eclipse Papyrus

1https://eclipse.org/papyrus

Email address: lucas.heer@student.uantwerpen.be ()

Preprint submitted to UAntwerpen January 29, 2017

https://eclipse.org/papyrus

1. Introduction

1.1. Embedded software

Since mbeddr’s main goal is to support developers of embedded software,
it is first necessary to identify the main challenges and problems in the tra-
ditional embedded software development process.
an embedded system is a computer system which is embedded in a bigger
technical or electrical device and serves a special purpose, such as controlling
actuators or measuring sensors. As a consequence, the following challenges
arise when developing software for an embedded system:

• Safety: A failure of an embedded system can have drastic conse-
quences, ranging from damage to life-threatening situations.

• Performance: The software for embedded systems often runs on small
microcontrollers with tight memory and performance constraints. Fur-
thermore, embedded system must frequently fulfill realtime require-
ments. Therefore, embedded systems are traditionally developed with
a low-level programming language like C, which offers direct access to
the registers and memory of the underlying platform. High-level ab-
stractions are desirable but often come with a substantial overhead,
both memory- and performance-wise.

• Maintainability: Once an embedded system has deployed or came
into the market, it is often hard to change its software. Therefore, a
”get it right at the first time” development approach is important. This
can be achieved through rigorous testing and formal verification of the
code. Also, maintainability of the code itself can be improved through
a clean design and the use of high-level constructs.

• Time to market: Depending on the domain, reducing the time needed
for developing an embedded system may be an important goal. Espe-
cially technical devices designed for a broad audience of customers are
quickly followed by either a new product or a newer generation.

Some of these goals contradict with each others. For example, a fast
time to market reduces the time for testing and verification, leading to errors
in the code. Safety and maintainability can be improved with high-level
constructs, but these may introduce overhead which can be problematic for
the performance aspect.

2

Embedded software is tightly associated with its domain and highly di-
verse, ranging from customer products like digital cameras or refrigerators
to complex and distributed systems used in the automotive or aerospace.
Domain-specific languages have shown to greatly contribute to the ease and
productivity of the development of embedded systems (Manfred et al. (2012)).
According to Ebert and Jones (2009), more than 80 percent of all companies
that develop embedded systems use C as their main programming language.
This seems natural since C allows for low-level access to the underlying exe-
cuting platform and can be compiled to efficient binary code. On the other
hand, it lacks support for high-level constructs, thus making the code hard
to understand, debug and maintain. In fact, many errors arise from rather
simple careless mistakes like bound errors, memory management and pointer
misuse or uninitialized variables that can be easily checked for using static
code analysis. See Vasik and Dudka (2011) for an overview of the most
common mistakes in C source code and how static code analysis can help
preventing these.
Due to C’s low-level nature, it is complicated to find errors in the logic of
the program itself. For example, C lacks built-in support for high-level con-
structs like state machines that are commonly used in embedded systems.
The mbeddr project tries to solve these problems by changing and extending
C with modern language engineering methods.

1.2. mbeddr

Language engineering offers methods to solve the aforementioned prob-
lems. The mbeddr project is an approach to address shortcomings of the C
programming language with a strong focus on the embedded system domain.
mbeddr is a set of integrated and extensible languages, allowing seamless inte-
gration of high-level constructs into standard C as well as custom extensions.
These high-level constructs are translated to standard C code, which then is
compiled with a normal compiler. The whole project is build on top of the
JetBrains MPS language workbench 2 and provides an IDE. Figure 1 shows
the complete mbeddr architecture. MPS is used as a platform to implement
both the C core and default extensions to the language, like state machines
or physical units. On top of that, it is possible to define own user extensions.
mbeddr is able to formally verify portions of its high-level constructs with

2https://www.jetbrains.com/mps

3

https://www.jetbrains.com/mps

external tools like NuSMV 3, a symbolic model checker used to proof certain
properties of state machines. mbeddr also supports parts of the software
engineering process. It allows for the textual definition of requirements and
code documentation as well as adding trace links from code to requirements.
Modules and their dependencies can be visualized with PlantUML 4.

C compiler
Debugger

JetBrains MPSPlatform

Tool NuSMV Yices CBMC PlantUML ...

Implementation Analysis Process

C CoreCore
Model

checking
SMT

checking
Dataflow
analysis

Visualization
Documentation
Requirements

Default
extensions

Components
State

machines

Physical
units

Unit
testing

User
extensions

State
machine

verification

Decision
tables

Figure 1: The mbeddr architecture stack. The underlying platform for every component
is the JetBrains MPS language workbench.

Following is an incomplete overview of changes and extensions that mbeddr
offers to the programmer compared to standard C.

Cleaned up C C99 serves as a basis. In order to make C safer and more
maintainable, header files and the preprocessor were removed from the lan-
guage and a modern module system was added.
Decision tables mbeddr provides a graphical table embedded directly in
the code that is translated to nested if-statements (see Figure 2). This leads

3http://nusmv.fbk.eu
4http://plantuml.com

4

http://nusmv.fbk.eu
http://plantuml.com

to safer code, since the tabular representation helps to spot mistakes much
faster than the bare textual counterpart.
State charts The language was extended with a notion of state charts. They
can be defined in a textual or tabular way and visualized. State charts are
translated to a switch-based implementation and can be formally verified for
e.g. dead states or non-determinism, both potentially harmful and undesired
properties in embedded systems.
Requirement tracing mbeddr comes with an own language to write re-
quirements using normal text. Every requirement can be annotated with a
link to the corresponding source code that implements the requirement.
Unit testing A new language extension for unit testing was designed to
address the problem of testing in embedded software development.

Voelter et al. (2012) and Voelter et al. (2013) give a throughout overview
of mbeddr, both from the language engineering and the embedded software
development point of view.

Figure 2: Concrete syntax of a decision table embedded in standard C code. See code
listing 2 in the appendix section for the generated code.

5

1.3. Language workbenches and MPS

The term language workbench was first used by Fowler (2005). Accord-
ingly, a language workbench is a tool in which it is possible to freely define
new languages which are fully integrated with each other. A characteristic
feature of a language workbench is that it uses a projectional editor (as op-
posed to a textual or parser-based editor) to manipulate a domain-specific
language. Figure 3 shows the difference between these two concepts: In a
textual editor, the user edits and perceives the concrete syntax in a text
buffer. This buffer is then checked and transformed into the abstract syntax
tree (AST). Projectional editors do not use parsers. Instead, the user directly
modifies the AST while still perceiving the concrete syntax. For example,
projectional editors allow the integration of graphical or tabular notations
along with texutal notations. mbeddr makes use of this feature to provide a
tabular representation for large if-else constructs in form of a decision table
(see Figure 2). Voelter et al. (2014) give an overview over projectional editing
and investigate its practical usability.

Figure 3: Difference between a textual (left) and projectional editor (right)

mbeddr is implemented using the JetBrains MPS (Meta-Programming
System) language workbench. MPS is an open-source language workbench
that allows for the definition of new languages while making heavy use of
projectional editing. It simultaneously serves as an IDE for this language.
Textual, symbolic, tabular and graphical notations are natively supported.

See Pech et al. (2013) for a short overview of MPS as well as an example
on how to extend Java using this language workbench. Chapter 2 shows how
to implement a simple domain-specific language in MPS.

1.4. Related work

mbeddr has gained some popularity among embedded system develop-
ment. In Wortmann and Beet (2016), mbeddr was used to create a domain-
specific extension to the C programming language specific to the needs of
satellite flight software. The extension is aware of the ECSS 5 Packet utiliza-

5European Cooperation for Space Standardization

6

tion standard, a standard defining the telemetry and teledata packets sent
and received by a satellite. The authors identify great potential to increase
both developer productivity and quality of the resulting software.
In order to evaluate the practical use of mbeddr, Voelter et al. (2015) have
conducted an industrial case study on developing software for a smart meter.
While making heavy use of mbeddr’s high-level constructs, they show that
it is still possible to generate efficient code with low overhead that runs on
a time- and memory constraint microprocessor. They also identify a sound
improvement in terms of mastering complexity and maintainability.
Vinogradov et al. (2015) shows how mbeddr can help writing code for rail-
way domain applications. In essence, a subsystem of a legacy framework for
railway applications was re-engineered. Several advantages to the traditional
software writing process as well as some limitations of mbeddr were iden-
tified, among them some restrictions when it comes to copy-pasting source
code into the projectional editor of mbeddr.

1.5. Overview of the paper

Section 2 presents a case study to demonstrate the process of developing
a language in MPS on a small scale. Section 3 elaborates on the experiences
made with MPS and compares both the workflow of implementing the lan-
guage and the quality of the results with the same language implemented in
Eclipse Papyrus, a tool for graphical modelling of UML2 applications with
extended code generation capabilities. Section 4 gives a conclusion and a
short overview of possible future work.

7

2. Case study

2.1. Overview

The process of designing a domain-specific language in MPS will be shown
and evaluated by means of a simple example. As as case study, an image
processing pipeline was chosen. It consists of a set of atomics that are im-
ages, processing blocks and links. Images can be connected via links with
the processing blocks. The processing blocks are a set of pre-defined image
manipulations. Examples for such manipulations are scaling, colorspace con-
version or various filters like sharpen, blur or brightness adjustment. Listing
1 shows a textual representation of a model in that language.

1 load input image . jpg
2
3 g r a y s c a l e
4 b lur method gauss s t r ength 2
5 r e s i z e f a c t o r 0 . 7
6
7 save output image . png

Listing 1: Sample textual definition of a processing pipeline

2.2. Implementation

MPS uses a set of DSLs itself for defining different aspects of the language
to implement. This includes the structure, editor, constraints, data flow, type
system and the generator. Once the language is designed and implemented,
MPS can function as an IDE for this language, offering code completion,
intentions, refactoring and debugging facilities. In the following, the process
of implementing the image processing pipeline language is described.

Abstract syntax
Typically, the abstract syntax of the language is implemented first. In

MPS, this is called the structure. The structure consists of a set of concepts,
which represent types of nodes in the AST and define properties, children and
references. As such, concepts can be seen as classes in the object-oriented
programming world.

In the image processing language, every command has a concept. Figure
4 shows such a concept definition for the ”blur” command. It extends the

8

”Command” concept, which is an abstract concept that is extended by every
command. The ”properties”-field serves as a specification for the arguments
of the command, which in this case are the blurring method and the strength
of the effect.

Figure 4: Concept definition for the blur command.

Beside the definition of a concept for every command, the pipeline itself
has to be defined. Figure 5 shows the abstract syntax for the pipeline. The
most important part is the ”children”-field: Every pipeline starts with ex-
actly one load command, followed by a list of commands and ends with a
save command. Note that the concepts for ”load” and ”save” do not imple-
ment the abstract ”Command” concept so they are not included in the list
of commands.

Concrete syntax
Once the abstract syntax is defined, the next step is the design of the

visual representation of every concept (more specific: a representation of
every AST node). This is done by adding one or more editors to every
concept. A concept can have multiple editors to let the programmer choose
between different notations that best fits the task. For example, mbeddr

9

Figure 5: Concept for the complete pipeline. The children define which concepts are valid
in the pipeline.

makes use of this feature by defining different representations for the state
chart construct (textual, tabular and graphical, as shown in section 1).

The language for defining editors is rather straight-forward. For the im-
age processing language, only textual representations were implemented. The
font and the syntax highlighting is also defined in the editor. Note that it
is not strictly necessary to define editors; MPS comes with a default textual
representation for every concept that will be used when no editor is defined.

Enhancing editing experience
Although the language is now completely defined, it is possible to assist

the programmer with modern IDE features and further constrain the lan-
guage. One constraint is already implicitly given by the structural definition
of the pipeline (see Figure 5): Every pipeline begins with a load command,
followed optionally by some processing commands and ends with a save com-
mand. Further constraints mainly concern valid values for the properties.
For example, it is currently possible to give the ”method”-property arbitrary
strings whereas only ”gaussian” and ”box” should be valid. This can be

10

defined in the constraints-aspect of MPS. The image processing language
makes only use of the property constraints, which are Java functions that
have access to the property and evaluate to a boolean. In the same manner,
constraints for the numeric values of most image effects are implemented.

The functions that define the constraints are invoked each time when
evaluating the allowed position for a node in the AST. This means that an
invalid argument is immediately shown in the IDE editor of the language.

Generator
Typically, a domain-specific language is not executed but transformed

into another language. The generation process in MPS consists of two phases:
First, a template-based model-to-model transformation engine reduces the
model into a model of the target language. The second phase uses text
generators to convert the reduced model into regular program text. Two
main parts are needed to define the generator: A mapping configuration
which specifies which concepts are processed with which templates and the
templates itself. Templates are written in the target language and enriched
with macros that tie the template to the input concept. Figure 6 shows
the template for the load command. Every load command gets reduced to
fragment of Java code that uses the ImageIO class to load an image file. The
file name argument is annotated with a macro that copies the name property
from the load image concept.

For the case study, Java was chosen as target language. MPS itself is
implemented in Java and every language definition concept shown above
builds around a custom dialect of Java, called the BaseLanguage. Although
MPS supports the transformation to arbitrary target languages, these first
have to be modeled in MPS itself. For example, mbeddr has implemented
the complete C language in MPS and then build the extensions atop of it.

2.3. Code example

Figure 7 shows an example pipeline that was written in MPS after the
language has been defined. After applying the code generator, the code
shown in listing 3 in the appendix is produced.

11

Figure 6: Generator template for the load image command.

Figure 7: An example pipeline.

12

3. Discussion and comparison

3.1. Experience with MPS

Outside the research domain, language workbenches have the reputation
to be complicated and not mature enough to be used in production (Erdweg
et al. (2015)). One main concern in the past was the projectional editing
concept which is deeply integrated into MPS. Programmers are accustomed
to edit code freely as text and not directly manipulate the abstract syntax
tree of the language. In the recent years however, projecitonal editing has
become more user friendly and is nowadays considered just a minor obstacle
(See Voelter et al. (2014) for an overview of projectional editing and Berger
et al. (2016) for an empirical study about the editing efficiency). This was
confirmed while implementing the image processing language. While the
behavior of the editor was unfamiliar in the beginning, it was found to be on
par with textual editing where the concrete syntax is changed directly.

MPS itself has proven to be a stable and mature environment for devel-
oping domain-specific languages. It is extensively documented with tutorials
and screencasts that gradually guide the user through the different aspects
of MPS. However, some screencasts were recorded for older versions of MPS
and therefore slightly outdated. Also, although quick successes were possible
in the beginning, more advanced topics like data flow or the type system
aspect are often neglected in tutorials or only poorly described.

Initially, it was planned to transform the DSL to C/C++ code (following
the mbeddr project on a small scale). After some initial research it became
clear that this was impracticable and beyond the scope of this paper, as it
would have required to first implement the target language in MPS. Since
this was already done by the mbeddr project for generating C code, copying
the language definition was considered but discarded because the mbeddr
core language is tightly integrated in the whole framework. However, apart
from mbeddr, MPS was successfully used for generating code for different
target languages, among them C++ and R 6 7.

3.2. Comparison with other tools

Beside MPS, numerous other language workbenches exist. They can be
informally divided into textual, graphical and projectional. Textual work-

6http://campagnelab.org/software/metaR/
7http://aveco.com/

13

http://campagnelab.org/software/metaR/

benches include Xtext 8 or Spoofax 9. An example for a graphical workbench
is MetaEdit+ 10. The most recent development are projectional workbenches
like MPS. For a comprehensive comparison between different language work-
benches, refer to Erdweg et al. (2015). Here, a comparison with Eclipse
Papyrus, a UML2 tool for domain-specific language modeling is done. The
DSL described in section 2 was also implemented in Papyrus. The following
metrics were compared:

• Tool complexity: How easy is it to install, learn and use the tool?

• Tool scope: What is the target audience of the tool? What are its
capabilities?

• Usability of DSL: How usable is the DSL? How good does it reflect the
domain?

• Extensibility: How can the DSL be extended with additional con-
structs? What steps are involved?

In the following section, theses questions will be subsequently answered.

Tool complexity
JetBrains MPS is implemented in Java and therefore available for every

system that runs the JVM. There exists a official documentation as well as
a set of screencasts and tutorials to guide beginners through the process of
developing a language. Once initial struggles with the projectional editor are
hurdled, the tool is just as easy to use as every other JetBrains product.

Papyrus is build around the Eclipse platform and therefore readily avail-
able. An official documentation also exists but is rather limited to UML
modeling and not the creation of custom DSLs. Much information around
this topic has to be gathered from forums and third parties. Compared to
MPS, the learning curve was perceived as more steep in the beginning.

Tool scope

8http://www.eclipse.org/Xtext/
9http://www.metaborg.org/en/latest/

10http://www.metacase.com/

14

http://www.eclipse.org/Xtext/
http://www.metaborg.org/en/latest/
http://www.metacase.com/

With MPS, it is possible to create DSL for every domain. Although the
main focus is on textual representation of the language, MPS also allows
for tabular and graphical editing. The mbeddr project is a good example
for that. MPS is closely tied to Java and uses a Java dialect to define the
DSL constructs. As a result, only Java is natively supported as a target
language for code generation. Generating code for different target languages
is possible but involves much more effort since this language itself has to be
implemented first.

Papyrus itself is not explicitly a tool for designing DSLs, however it sup-
ports extension mechanisms that make it possible to add new concepts to
existing UML constructs. In order to define a DSL, a UML profile has to be
created which defines the abstract and concrete syntax of the language. Like
MPS, the generator is template-based: fragments of the code are written by
hand and annotated with macros to copy information from the source model.

Usability of DSL
In most cases, the concrete syntax of DSLs in MPS is textual, although

graphical elements are also supported. However, these seem to be more com-
plex to implement and are therefore only sparsely described. Figure 7 shows
a model in the DSL implemented in MPS. Several constraints were added
to the DSL. First, each model starts with a load and ends with a save com-
mand. Also, parameters to several functions were restricted to valid values
only. Most commands support auto complete. Finally, MPS simultaneously
serves as an IDE for the DSL which makes distribution to end users easy.

Figure 8: An model of the image processing DSL in Eclipse Papyrus.

The DSL in Papyrus is represented in a graphical way. See figure 8 for
an example. The implemented constraints were similar to the ones in MPS.

15

However, in order to make the DSL user friendly, a plugin has to be devel-
oped first which then can be installed in Eclipse.

Extensibility
Adding a new command to the DSL is straight-forward in MPS: A new

concept has to be added, an editor defined and a new template for the gen-
erator written.
In Papyrus, the process of extending the DSL is similar: First, a new stereo-
type which extends an UML element has to be defined. Then, the template
for code generation has to be edited so that code is generated for the new
element.

In summary, it was feasible to realize the DSL in a reasonable amount of
time with both tools. While MPS emphasizes projectional editing as well
as textual representations for the concrete syntax, Papyrus, due to its prox-
imity to the UML, is well suited for languages that are expressible with
object-oriented constructs.

16

4. Conclusion and future work

With mbeddr, a concrete example of a large-scale domain-specific lan-
guage has been presented. mbeddr has been found a powerful solution for
solving the inherent problems that occur when developing software for em-
bedded systems. The success of the mbeddr project suggests that language
workbenches are mature enough be used in production. To further investi-
gate the practicability of language workbenches in real-world applications, a
language from the image manipulation domain has been implemented in Jet-
Brains MPS. That involved defining the abstract syntax, the concrete syntax
and a generator to transform models in the language to executable Java code.
The process as well as the results have been compared to an implementation
of the same language in the Eclipse Papyrus project.

Future research can be done on the mbeddr project itself or on MPS as
a language workbench. Although both have been proven to be valuable ad-
ditions to their specific domain, industrial adoption seems to happen only
slowly. Another aspect concerns the extensibility of mbeddr: Despite be-
ing mentioned in various sources, little can be found on concrete process of
extending mbeddr with a custom language.

17

Appendix A. Code listings

Listing 2: Generated code from decision table

1 #include ”main.h”
2
3 static int32 t main get points(float speed, float altitude);
4 static uint8 t main blockexpr get points 6(float altitude, float speed);
5
6 static int32 t main get points(float speed, float altitude)
7 {
8 int32 t points = 0;
9 points += main blockexpr get points 6(altitude, speed);

10 return points;
11 }
12
13 int32 t main(int32 t argc, char ∗(argv[]))
14 {
15 int32 t points = main get points(300, 700);
16 return 0;
17 }
18
19 static uint8 t main blockexpr get points 6(float altitude, float speed)
20 {
21 if (speed > 200)
22 {
23 if (altitude < 1000)
24 {
25 return 1;
26 }
27 if (altitude < 500)
28 {
29 return 3;
30 }
31 }
32 if (speed > 500)
33 {
34 if (altitude < 1000)
35 {

18

36 return 2;
37 }
38 if (altitude < 500)
39 {
40 return 4;
41 }
42 }
43 return 0;
44 }

Listing 3: Generated code from the image pipeline

1 package ImageProc.sandbox;
2
3 /∗Generated by MPS ∗/
4
5 import java.awt.image.BufferedImage;
6 import java.io.IOException;
7 import javax.imageio.ImageIO;
8 import java.io.File;
9 import com.jhlabs.image.AbstractBufferedImageOp;

10 import com.jhlabs.image.ContrastFilter;
11 import com.jhlabs.image.GrayscaleFilter;
12 import com.jhlabs.image.GaussianFilter;
13
14 public class MyPipeline {
15
16 private static void saveImage(BufferedImage image, String filename)
17 throws IOException {
18 String fileExt = ””;
19 int i = filename.lastIndexOf(’.’);
20 if (i > 0) {
21 fileExt = filename.substring(i + 1);
22 }
23 ImageIO.write(image, fileExt, new File(filename));
24 }
25
26 public static void main(String[] args) throws IOException {
27 BufferedImage image = null;

19

28 AbstractBufferedImageOp filter = null;
29
30 try {
31 image = ImageIO.read(new File(”image.png”));
32 } catch (IOException e) {
33 e.printStackTrace();
34 }
35
36 filter = new ContrastFilter();
37 filter.setBrightness(1.2f);
38 image = filter.filter(image, null);
39 filter = new GrayscaleFilter();
40 image = filter.filter(image, null);
41 filter = new GaussianFilter(2);
42 image = filter.filter(image, null);
43
44 try {
45 saveImage(image, ”image.jpg”);
46 } catch (IOException e) {
47 e.printStackTrace();
48 }
49 }
50 }

20

Berger, T., Völter, M., Jensen, H. P., Dangprasert, T., Siegmund, J., 2016.
Efficiency of projectional editing: A controlled experiment. In: Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering. FSE 2016. ACM, New York, NY, USA,
pp. 763–774.
URL http://doi.acm.org/10.1145/2950290.2950315

Ebert, C., Jones, C., April 2009. Embedded software: Facts, figures, and
future. Computer 42 (4), 42–52.

Erdweg, S., van der Storm, T., Voelter, M., Tratt, L., Bosman, R., Cook,
W. R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., Konat, G., Molina,
P. J., Palatnik, M., Pohjonen, R., Schindler, E., Schindler, K., Solmi, R.,
Vergu, V., Visser, E., van der Vlist, K., Wachsmuth, G., van der Woning,
J., 2015. Evaluating and comparing language workbenches: Existing
results and benchmarks for the future. Computer Languages, Systems
and Structures 44, Part A, 24 – 47, special issue on the 6th and 7th
International Conference on Software Language Engineering (SLE 2013
and {SLE} 2014).
URL //www.sciencedirect.com/science/article/pii/

S1477842415000573

Fowler, M., 2005. Language workbenches: The killer-app for domain specific
languages? https://web.archive.org/web/20160710201655/http:

//martinfowler.com/articles/languageWorkbench.html, accessed:
2016-12-07.

Manfred, B., S. Kirstan, H. K., Schtz, B., 2012. What is the Benefit of a
Model-Based Design of Embedded Software Systems in the Car Industry?
IGI Global, Ch. 13.

Pech, V., Shatalin, A., Voelter, M., 2013. Jetbrains mps as a tool for ex-
tending java. In: Proceedings of the 2013 International Conference on
Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools. PPPJ ’13. ACM, New York, NY, USA,
pp. 165–168.
URL http://doi.acm.org/10.1145/2500828.2500846

Vasik, O., Dudka, K., 2011. Common errors in c/c++ code and static anal-
ysis.

21

http://doi.acm.org/10.1145/2950290.2950315
//www.sciencedirect.com/science/article/pii/S1477842415000573
//www.sciencedirect.com/science/article/pii/S1477842415000573
https://web.archive.org/web/20160710201655/http://martinfowler.com/articles/languageWorkbench.html
https://web.archive.org/web/20160710201655/http://martinfowler.com/articles/languageWorkbench.html
http://doi.acm.org/10.1145/2500828.2500846

Vinogradov, S., Ozhigin, A., Ratiu, D., Sept 2015. Modern model-based
development approach for embedded systems practical experience. In: 2015
IEEE International Symposium on Systems Engineering (ISSE). pp. 56–59.

Voelter, M., Deursen, A. v., Kolb, B., Eberle, S., Oct. 2015. Using c language
extensions for developing embedded software: A case study. SIGPLAN
Not. 50 (10), 655–674.
URL http://doi.acm.org/10.1145/2858965.2814276

Voelter, M., Ratiu, D., Kolb, B., Schaetz, B., 2013. mbeddr: instantiating a
language workbench in the embedded software domain. Automated Soft-
ware Engineering 20 (3), 339–390.
URL http://dx.doi.org/10.1007/s10515-013-0120-4

Voelter, M., Ratiu, D., Schaetz, B., Kolb, B., 2012. Mbeddr: An extensible
c-based programming language and ide for embedded systems. In: Pro-
ceedings of the 3rd Annual Conference on Systems, Programming, and
Applications: Software for Humanity. SPLASH ’12. ACM, New York, NY,
USA, pp. 121–140.
URL http://doi.acm.org/10.1145/2384716.2384767

Voelter, M., Siegmund, J., Berger, T., Kolb, B., 2014. Towards user-friendly
projectional editors. In: 7th International Conference on Software Lan-
guage Engineering (SLE).

Wortmann, A., Beet, M., 2016. Domain specific languages for efficient satel-
lite control software development. In: Data systems in aerospace.

22

http://doi.acm.org/10.1145/2858965.2814276
http://dx.doi.org/10.1007/s10515-013-0120-4
http://doi.acm.org/10.1145/2384716.2384767

	Introduction
	Embedded software
	mbeddr
	Language workbenches and MPS
	Related work
	Overview of the paper

	Case study
	Overview
	Implementation
	Code example

	Discussion and comparison
	Experience with MPS
	Comparison with other tools

	Conclusion and future work
	Code listings

