Translating Statecharts to behaviourally equivalent Timed Petri Nets

Matteo Guastella matteo.guastella@student.uantwerpen.be

University of Antwerp

Overview

- Goals
- Timed Petri Net formalism in AToMPM
- Boundaries
- Transformation by examples
- Put all together
- Exporting to TINA toolbox
- Future work

Goals

- From StateCharts to Timed Petri Nets:
 - Create timed petri net formalism in AToMPM
 - Rule based transformation between StateCharts and TPN
 - Exporting TPNs to TINA toolbox
 - Assess the goodness of the transformation

Timed Petri Net in AToMPM

Abstract Syntax

4

Timed Petri Net in AToMPM

Concrete Visual Syntax

Boundaries

Event Transition

Transitions

Transitions

Two steps approach:

- 1. Initialization
- 2. Connections
 - a. Composite state -> Initial State
 - b. Orthogonal Component ->Initial State of every orthogonal component

Composite States

Two steps approach:

- 1. Initialization
- 2. Connection from every sub-state to the composite state

Non determinism

ev2/print

A choice is necessary:

• StateMate approach (outer transitions)

D. Harel, A. Naamad, The statemate semantics of statecharts, ACM Trans. Softw. Eng. Methodol. 5 (4) (1996) 293-333

Orthogonal Components and Broadcasting

Note:

- every transition have the possibility to fire once in a time step;
- the events are consumed at the end of the time step.

<codec Transformation by examples 12 [0, w[contect [0, w **Orthogonal Components and Broadcasting** :double conn events [0, w[\$3 **S2** 86 V init fair transitio \$10 OC1 OC3 :connect orth fai 20 35 38 77 :connect events to fair in (OC4 OC2 C NAC

Orthogonal Components and Broadcasting

Somenthing is missing...Events Generator

- We can simulate the interaction of the environment with the system (e.g user interfaces)
- We are able to construct the reachability graph (analyze the correctness of the transformation)

Put all together

Transformation Schedule:

- 1. Initialization
- 2. Handle transition to Composite States
- 3. Handle transition from Composite States
- 4. Handle transitions between Composite States
- 5. Handle transitions between Simple States
- 6. Handle events and broadcasting inside Orthogonal Components
- 7. Events Generator

Export to TINA

- Export in metaDepth:
 - TPN Abstract Syntax
 - TPN Model
- Convert in .tpn format using an egl script
- Import in TINA toolbox
- Assess goodness of the transformation:
 - comparison between manual and automatic nets
 - reachability graph

1	net sc_pn
2	tr Transition_54 : {a:} [0,w[Place_34 -> Place_30
з	tr Transition_65 : {abort} [0,w[Place_66 Place_34?-1 ->
4	tr Transition_76 : {gen_e: e3} [0,w[Place_75 Place_667-1 -> Place_75 Place_66
5	tr Transition_44 : {a:} [0,w[Place_26 -> Place_28
6	tr Transition_67 : {a: q} [0,w[Place_34 Place_66 -> Place_32
7	tr Transition_57 : {abort} [0,w[Place_58 Place_26?-1 ->
8	tr Transition_37 : {abort} [0,w[Place_58 Place_26?-1 Place_34?-1 Place_30?-1 ->
9	tr Transition_59 : {a:} [0,w[Place_58 Place_26 -> Place_34
10	tr Transition_49 : {a:} [0,w[Place_30 -> Place_28
11	tr Transition_39 : {a:} [0,w[Place_34 Place_58 -> Place_28
12	tr Transition_81 : {gen_e: x} [0,w[Place_75 Place_58?-1 -> Place_58 Place_75
13	pl Place_32 : {F} (0)
14	pl Place_75 : {ev_gen} (1)
15	pl Place_30 : {X.D} (0)
16	pl Place_28 : {E} (0)
17	pl Place_26 : {X.B} (0)
18	pl Place_58 : {e: x} (0)
19	pl Place_34 : {X.C} (0)
20	

Export to TINA

Assess goodness of the transformation: Reachability Graph

Future Work

- Extend boundaries:
 - \circ support of history states, conditions, ...
- Generalize rules using abstract states
- Improve performance

Thank you for the attention

Questions?