
Translating Statecharts to
behaviourally equivalent

Timed Petri Nets
Matteo Guastella

matteo.guastella@student.uantwerpen.be

University of Antwerp

mailto:matteo.guastella@student.uantwerpen.be
mailto:matteo.guastella@student.uantwerpen.be

Overview

● Goals
● Timed Petri Net formalism in AToMPM
● Boundaries
● Transformation by examples
● Put all together
● Exporting to TINA toolbox
● Future work

2

Goals

● From StateCharts to Timed Petri Nets:
○ Create timed petri net formalism in AToMPM
○ Rule based transformation between StateCharts and TPN
○ Exporting TPNs to TINA toolbox
○ Assess the goodness of the transformation

3

Timed Petri Net in AToMPM

Abstract Syntax

4

Note:
● -1 = inf. = w
● interval_type:

○ []
○] [
○ [[
○]]

Timed Petri Net in AToMPM

Concrete Visual Syntax

5

Boundaries

6

Transformation by examples

7

Event Transition

Transitions

Timed Transition

Transformation by examples

8

Transitions

Transformation by examples

9

Composite States
Two steps approach:
1. Initialization
2. Connections

a. Composite state -> Initial State
b. Orthogonal Component ->Initial State of every orthogonal

component

Transformation by examples

10

Composite States
Two steps approach:
1. Initialization
2. Connection from every sub-state to the composite state

Transformation by examples

11

Non determinism
A choice is necessary:

● StateMate approach (outer transitions)

D. Harel, A. Naamad, The statemate semantics of statecharts, ACM Trans. Softw. Eng. Methodol. 5 (4) (1996) 293–333

Transformation by examples

12

Transformation by examples

13

Orthogonal Components and Broadcasting

Note:
● every transition have the

possibility to fire once in a
time step;

● the events are consumed
at the end of the time
step.

Transformation by examples

14

Orthogonal Components and Broadcasting

Transformation by examples

15

Orthogonal Components and Broadcasting

Transformation by examples

16

Somenthing is missing...Events Generator
● We can simulate the interaction of the

environment with the system (e.g user interfaces)
● We are able to construct the reachability graph

(analyze the correctness of the transformation)

Put all together

17

Transformation Schedule:
1. Initialization
2. Handle transition to Composite

States
3. Handle transition from Composite

States
4. Handle transitions between

Composite States
5. Handle transitions between Simple

States
6. Handle events and broadcasting

inside Orthogonal Components
7. Events Generator

1.

2.

3.

4.

5.

6.

7.

Export to TINA
● Export in metaDepth:

○ TPN Abstract Syntax
○ TPN Model

● Convert in .tpn format using an egl script
● Import in TINA toolbox
● Assess goodness of the transformation:

○ comparison between manual and automatic nets
○ reachability graph

18http://projects.laas.fr/tina/

Export to TINA
Assess goodness of the transformation: Reachability Graph

19http://projects.laas.fr/tina/

Future Work

● Extend boundaries:
○ support of history states, conditions, …

● Generalize rules using abstract states
● Improve performance

20

Thank you for the attention

Questions?

21

