
Ontologies in Computer Science

Olivier Bellemans

University of Antwerp, Belgium
olivier.bellemans@student.uantwerpen.be

Abstract

The aim of this text is to give an introduction to ontologies and the means

of expressing them. The formal foundations of ontology languages are em-

phasized, various applications in the field of computer science are discussed.

Keywords: Ontologies, Formal Logic, Description Logics, Semantic Web

1 Introduction

Ontologies are descriptions of the concepts and relationships in a par-

ticular domain. Such a description may take the form of informal prose,

or it may be embedded in a more formal language with precise semantics.

Formal logics are well suited for this task as they allow one to mechanically

infer implicit knowledge based on what has already been stated about the

domain.

We describe ontologies in more detail and provide some examples in

Section 2. Section 3 briefly covers the syntax and semantics of predicate logic

and description logics, and demonstrates how ontologies can be expressed as

statements in these logics. We look at some standardized ontology languages

and their applications in Section 4. Finally, we conclude in Section 5.

2 Ontologies

Ontologies capture knowledge about a domain. This knowledge may

serve to share understanding among different groups, improve interoperabil-

1



ity of software systems [1], reason about properties of models [2] or any other

goal which benefits from explicitly capturing knowledge.

To make the discussion more concrete we will focus on ontologies of

one specific domain: family. A family has concepts such as Person, Woman

or Husband. The instances of these concepts can be related to each other

by relations such as parent-of or sibling-of. Furthermore, the concepts

themselves may be related, we can say that every Woman is also a Person,

for example.

Figure 1: A family of individuals and how they are related. Ontologies can be used to

capture general knowledge that is true of all families.

Most software systems contain ontologies. Class hierarchies contained in

object-oriented computer programs are a form of ontology, as they describe

the types and relationships of objects in a particular domain. Similarly, a

database schema can be considered an ontology. However, the main pur-

pose of a database schema is efficient storage and querying of data, not

understanding. The formalisms we examine in Sections 3 and 4 have been

designed with the explicit goal of understanding and reasoning.

2



3 Formal Logic

This section illustrates how formal logics can be used to express on-

tologies. The syntax and semantics are not covered in detail. For a full

treatment of propositional logic and predicate logic see [3] and [4]. A good

overview of description logics is given in [5].

3.1 Introduction

Consider following argument: ‘Whenever it rains it is cloudy, it is not

cloudy, therefore it does not rain’. It turns out that indeed it can not rain

if the first two statements are true. This can be verified by translating the

sentences to propositional logic, exposing their structure.

rain→ cloudy,¬cloudy |= ¬rain

p→ q,¬q |= ¬p
(1)

Constructing a truth table reveals that indeed, the truth of the first two

statements implies the truth of the third. Curiously, the fact we’re talking

about the weather is irrelevant, we can relabel the atomic propositions to

construct an argument “blueprint” as in Eq. 1. This form of argument is

best known as modus tollens, it can be applied in any context.

The ability to mechanically verify and derive statements based on a set

of existing statements makes formal logics an attractive choice to express

ontologies. A “knowledge base” can be built out of logic statements, describ-

ing things you know to be true about a domain. Any implicit knowledge

can then be derived, for example the knowledge that any individual that is

the parent of a parent is a grandparent.

3.2 Predicate Logic

Propositional logic is not expressive enough to capture the structure of

many common statements. Sentences like ‘All men are people’ can only

be encoded as atomic propositions. Predicate logic extends propositional

logic with quantifiers, predicates and functions. Quantifiers allow one to

express the fact that a property holds for all individuals or for at least one

3



individual. Unary and binary predicates can be used to model concepts and

relationships, respectively. The universal quantifier ∀ combined with unary

predicates lets us express subclass relations between concepts, as in Eq. 2,

which states Man and Woman are subclasses of Person.

∀x[Man(x)→ Person(x)]

∀x[Woman(x)→ Person(x)]
(2)

The existential quantifier ∃ can be combined in various ways to express

cardinality constraints. The formula in Eq. 3 defines a “crazy cat lady” as

a woman who owns two or more cats. Surely the threshold is higher than

two, but you can imagine what would happen to our formula.

∀x[CrazyCatLady(x)↔Woman(x) ∧

∃y[owns-cat(x, y) ∧ ∃z[z 6= y ∧ owns-cat(x, z)]]]
(3)

These examples demonstrate that predicate logic is a rich formalism for ex-

pressing ontologies. However, the notation is verbose, concepts and relations

need to be stated in a roundabout way. Furthermore, the validity of state-

ments in predicate logic is undecidable. This is undesirable if we want to

write computer programs to reason about our ontologies.

3.3 Description Logics

Description logics are a family of logics in which concepts and relations

can be expressed in a more direct manner. The subclass statements of Eq.

2 can be rewritten as in Eq. 4.

Man v Person

Woman v Person
(4)

In description logics concepts can be composed by using operators such

as conjunction (u) and disjunction (t). This makes it straightforward to

define new concepts in terms of others. Eq. 5 contains the same definition of

“crazy cat lady” as in Eq. 3. Here, ≥2 owns-cat describes a concept whose

individuals all own two or more cats.

CrazyCatLady ≡Woman u ≥2 owns-cat (5)

4



Aside from conjunction and disjunction, most description logics contain con-

cept constructions such as negation (¬), existential restriction (∃r.C), and

value restriction (∀r.C). These last two can be used to define concepts

whose instances are related to instances of another concept. For example,

an individual belongs to ∃parent-of.Child if he has at least one child. Those

who belong to ∀parent-of.Woman have only female children.

A collection of statements in a description logic is called a knowledge

base. It consists of a terminology section called the TBox whose statements

are about concepts, and an assertional part called the ABox which asserts

facts about individuals. These statements may be true or false, depending

on how we interpret the symbols of concepts, relations and individuals. An

interpretation I in which all statements are true is called a model of a

knowledge base K, which we denote I |= K.

Interesting questions we can pose about a knowledge base is whether it is

consistent (i.e. whether interpretations can exist that satisfy all statements)

and whether all concepts are satisfiable. A knowledge base can also be

queried. We could, for example, ask to enumerate all individuals that are

instances of a given, possibly complex, concept.

4 Ontology Languages and Applications

4.1 OWL Web Ontology Language

We’ve seen that description logics are well suited for expressing ontolo-

gies. However, “bare” description logics were not designed for sharing knowl-

edge between software systems. A standardized language that specifies a

data format is needed to apply ontologies at large scale. One such language

is RDF, the Resource Description Framework, a standard of the World Wide

Web Consortium (W3C). Its specification includes an XML serialization for-

mat.

RDF is a fairly limited language that can not express, for example, car-

dinality constraints. The OWL Web Ontology Language is another W3C

standard that is more expressive. It is based on a description logic called

SHOIN (D), which is an almost-acronym that describes which features this

5



particular description logic posesses. The S stands for a set of “core” fea-

tures which are included in many description logics. This includes con-

junction, disjunction, complement and restricted forms of existential and

universal quantification, which we saw in Section 3.3. The H stands for

role hierarchies (e.g. all those related by r are also related by s), O for

nominals (concept “literals”), I for inverse roles (if a is a parent-of b, then

b is a child-of a), N for number restrictions (e.g. ≥2 owns-cat). The D in

parenthesis indicates that some concrete datatype has been integrated.

4.2 Semantic Web

A driving force behind the development of RDF and the OWL Web

Ontology Language is the vision of the “Semantic Web”. The Web today is

essentially a graph of linked documents, consisting mainly of unstructured

text. Although computer programs can examine the terms that occur in

these documents, they do not have a deep understanding of its contents

or its relationships. As a result, answering complex queries is difficult and

typically can’t be done in a fully automated fashion.

Figure 2: The web exposes and links documents of unstructed text. Documents are typi-

cally generated using data from a data source which stores the data in a more structured

form, such as a relational database.

In many cases the data used to generate these documents is stored in

a structured form, such as tables in a relational database. Given the right

standards, we could expose this data and its associated structure to the

outside world more directly, and link the data together just like we link

documents together today. Ontology languages are a key component for

making this vision a reality.

6



4.3 Model Driven Engineering

Another promising use of ontologies is in model driven engineering [2].

To determine whether a model of a railway system is an instance of the

ontological type “Safe”, for example, several different properties need to be

satisfied. One of these is the property “CollisionFree”, trains should not

collide. Different orthogonal semantic mappings from the railway model

onto models in suitable formalisms can be used. The models in the target

formalisms should each satisfy relevant properties. Colored Petri Nets, for

example, are appropriate to verify the “CollisionFree” property.

5 Conclusion

Ontologies describe the concepts and relationships of a particular do-

main. Formal logics are suitable hosts for expressing ontologies, as implicit

knowledge can be mechanically derived. Furthermore, ontologies can be

checked for consistency to make sure that no contradictions were introduced

by mistake. Predicate logic can be used but suffers from verbose syntax and

undecidability. Description logics are a family of logics which allow you to

compose concepts in a more direct way.

Ontology languages such as the OWL Web Ontology Language are based

on description logics and provide a standardized data format, allowing soft-

ware systems to exchange ontologies. One of the major applications of on-

tology languages is the Semantic Web, which is an ambitious vision where

the world’s data is exposed in a structured format and linked together, as

documents are linked together on the World Wide Web today.

References

[1] S. Grimm, A. Abecker, J. Völker, and R. Studer, Handbook of Semantic

Web Technologies , 509 (2011), arXiv:1011.1669v3.

[2] B. Barroca, T. Kühne, and H. Vangheluwe, CEUR Workshop Proceed-

ings 1237, 77 (2014).

7



[3] S. S. Epp, Discrete Mathematics with Applications, 4th ed. (Brooks/Cole

Publishing Co., Pacific Grove, CA, USA, 2010).

[4] M. Huth and M. Ryan, Logic in Computer Science: Modelling and

Reasoning About Systems (Cambridge University Press, New York, NY,

USA, 2004).

[5] F. van Harmelen, F. van Harmelen, V. Lifschitz, and B. Porter, Handbook

of Knowledge Representation (Elsevier Science, San Diego, USA, 2007).

[6] G. Antoniou, E. Franconi, and F. Van Harmelen, Reasoning Web , 1

(2005).

8


