
Layered Programming: A Language Independent
Variability Management Approach

J. De Pauw

University of Antwerp

joey.depauw@student.uantwerpen.be

C. Gomes

University of Antwerp

claudio.gomes@uantwerp.be

H. Vangheluwe

McGill University, University of Antwerp
hv@cs.mcgill.ca

Abstract

Many techniques to implement software product lines exist. Examples are
feature-oriented programming, aspect-oriented programming and delta-oriented
programming. They are all bound to a specific set of source languages. We pro-
pose a way of encoding variability independent of the used language. The goal
is to simplify software product line implementation, making it accessible to non-
experts. A tool/protocol is used to achieve this goal, much like git is used for
version control.

Keywords: software product line, variability management, feature model

Preprint submitted to Elsevier December 13, 2017

mailto:joey.depauw@student.uantwerpen.be
mailto:claudio.gomes@uantwerp.be
mailto:hv@cs.mcgill.ca


1. Introduction

Layered programming is the concept of writing code in layers. A software prod-
uct line is represented by a common base and a set of layers. A layer can be
seen as an overlay or delta to some program that adds, removes or changes
functionality. We use the name “layer” to represent a feature refinement. This
term is often used in the context of feature-oriented programming.[3]

It is possible to define a layer on top of another layer, providing a hierarchy.
Layers can also be independent of each other. They can then be combined
with specific semantics, encoded in a feature diagram. A Layer is defined by a
reference to its base layer and a set of differences with respect to the base.

Note that a layer is not limited to one language or one file. Every system has
multiple representations, like source code, makefiles, documentation and so on.
Adding a feature to a program should elaborate each of its representations so
they are all consistent.[3, 17]

Though the name “layered programming” suggests a programming paradigm,
it is more closely related to the category of tool support. The technique does
not aim to replace the need for a good SPL oriented architecture, but rather to
simplify the process of implementing, documenting, organizing and managing
the architecture.

In this study, we address following topics:

1. formal definition and workflow description
2. use cases for layered programming
3. implementation outline for a tool to support layered programming
4. analysis of the risks involved

This paper is structured as follows. Section 2 contains the related work. In
section 3 a more detailed motivation is given. Sections 4 and 5 propose a working
example and explain the solution with layered programming respectively. In
section 6 more technical aspects and risks are considered. Finally sections 7
and 8 conclude and list future work.

2. Related Work

Birk et. al. investigated SPL practices in the software industry in their paper [4]
from 2003. They remark the following about SPL architecture and tool support:

“All products should fit into the provided architecture and benefit from it. Un-
fortunately, the common architecture’s functionality, interfaces, and constraints
are usually abstract and complex. Not all the development organization’s mem-
bers or teams will understand them well. Not knowing the SPL architecture’s
capabilities inevitably leads to the architecture not being fully used.”

“Because requirements engineering for SPL can become highly complex, effec-
tive tool support is important. Existing tools dont satisfactorily support aspects
such as variability management, version management for requirements collec-
tions, management of different views on requirements, or dependency modeling
and evolution.”

2



Figure 1: Visual representation of layered programming

3



Layered programming is a tool-supported technique to assist in SPL develop-
ment. One of the benefits is that the variability is not hidden away in different
files like in most other techniques. Programmers can immediately see all fea-
tures that affect the piece of code they are working on, preventing code clones
and duplicate features.

Since 2003 numerous tools for SPL engineering have been proposed, among
which CIDE[6], AHEAD[3], FeatureHouse[1], FeatureIDE[16, 7] and VariantSync[11].

The creation of CIDE was motivated by the problems of both compositional and
annotative approaches. It is an Eclipse-based prototype tool for decomposing
legacy applications into features that may have a fine granularity[6]. Features
are not annotated directly in the code (like preprocessor directives). CIDE
manages the feature information and indicates what code belongs to which
feature by using different background colors.

The workflow of this tool is closely related to that of layered programming. One
of the common advantages is that feature code is still placed where it extends
the program, and it is therefore obvious to see how it extends the program, it is
simple to understand how a feature is implemented. The main differences are
that CIDE uses language specific information (AST representation) to encode
features. The CIDE workflow starts with a fully composed application with all
features implemented in a single code base, typically a legacy application. It
then supports the removal of features to create an artifact. Layered program-
ming implements both bottom up and top down approaches to create software
product lines. Artifact are created by adding and combining features, rather
than removing them.

AHEAD shows that software can have an elegant, hierarchical mathematical
structure that is expressible as nested sets of equations. AHEAD tools are ca-
pable of generating Java and non-Java artifacts automatically from nested sets
of equations using the Jak-specific tools jampack or mixin.[3, 14] AHEAD uses
the Jak language to describe features and to compose them in layers. The tech-
nique described in this paper is language independent and does not introduce a
new language.

FeatureHouse is a general architecture of software composition supported by
a framework and tool chain. FeatureHouse provides facilities for feature com-
position based on a language-independent model of software artifacts and an
automatic plug-in mechanism for the integration of new artifact languages.[1]
This tool generalizes many feature-oriented approaches by providing the typical
extend/override mechanism on a language-independent model. It is a descen-
dant of Batorys AHEAD program generator.[1, 3]

FeatureIDE is arguably the most popular open-source framework for feature-
oriented software development (FOSD). It is based on Eclipse and supports
several FOSD implementation techniques such as feature-oriented programming,
aspect-oriented programming, delta-oriented programming, and preprocessors.[16]
Numerous other tools have been built on top of the FeatureIDE architecture
(e.g.: CIDE, VariantSync, BUT4Reuse).

Shaefer et. al present the idea of delta-oriented programming (DOP) and pure
DOP in [12, 13].

4



Delta-oriented programming is a flexible programming language approach. A
product line is represented by a core module and a set of delta modules. The core
module provides an implementation of a valid product that can be developed
with well-established single application engineering techniques. Delta modules
specify changes to be applied to the core module to implement further products
by adding, modifying and removing code. A product implementation for a
particular feature configuration is generated by applying incrementally all delta
modules to the core module.[12]

It relates to layered programming in the sense that it allows a programmer to
defined deltas (called layers in this paper) with respect to a core module. Deltas
are specified syntactically and grouped together by their functionality. The
technique described in this paper is purely tool-based and allows the definition
of features right in the core module.

Mezini et. al. address the shortcomings of classic object oriented development
in [8]:

“Classes as the traditional units of organization of object oriented software have
proved to be insufficient to capture entire features of the software in a modular
way. As a result, the last decade has seen quite a number of approaches that
concentrate on a more appropriate representation of features in the source code”

They explore language specific solutions like aspect oriented programming and
feature-oriented approaches in the context of variability management and inves-
tigate their shortcomings. Feature-oriented approaches are defined as a class of
approaches that concentrate on encapsulating features as increments over an ex-
isting base program, together with a mechanism for combining different features
on demand. Existing feature-oriented approaches (FOAs) include: GenVoca [2],
mixin layers [14, 15], delegation layers [10], and AHEAD [3].

The technique proposed in this paper can be classified as a language indepen-
dent feature-oriented approach, not to be confused with feature-oriented pro-
gramming.

In their paper from 2014, Thüm et. al. conclude that feature-oriented soft-
ware development (FOSD) provides several techniques for the implementation
of SPLs. But, each technique comes with advantages and disadvantages, and
that there is no consensus on the best technique.[16]

Like other techniques for domain implementation in SPLs, this one too has its
advantages and disadvantages. In section 3 it is compared to existing techniques.

3. Motivation

To overcome the increasing demand for tailored software systems, industrial
software development often uses clone-and-own to build a new variant by copy-
ing and adapting an existing variant. Indeed, this procedure is easy to use
and requires less up-front investments. However, with an increasing number of
variants, development becomes redundant and the maintenance effort rapidly
grows. Hence, at some point, a sufficient number of variants is reached and
the migration to a product line is necessary. However, using a product line to

5



develop variants has several downsides. First, product lines have high up-front
investments which make the development of few variants unprofitable. Hence,
introducing a product line would be a risky task that could not pay off if the
number of required variants is unknown at beginning of development.[11]

To overcome this problem, domain implementation techniques should not only
support proactive, but also reactive and extractive product line engineering.
In reactive product line engineering, only a basic set of products is developed.
When new customer requirements arise, the existing product line is evolved.
The extractive approach allows turning a set of existing legacy application into
a product line. Development starts with the existing products from which the
other products of the product line are derived. [13, 5]

Layered programming can be deployed for proactive, reactive and extractive
product line engineering. Layers can easily be derived and extracted from ex-
isting code bases. Since this is a purely tool-based technique, there is no need
to add code. Depending on the quality of the existing architecture, refactoring
may not even be required.

One of the hardest tasks in software product line engineer is complexity man-
agement. Often abstract and complex architectural designs are conceived to
support variability (e.g.: mixins and mixin layers) or new languages are invented
(e.g.: DeltaJ, Caesar, AHEAD). Complexity can even arise from extensive use
of preprocessor directives (ifdef).

Though each of these techniques have their advantages and disadvantages, we
can conclude that they all add complexity to a software product line, making
domain implementation a task for SPL experts rather than domain or language
experts, which is counter intuitive. With the technique presented in this paper,
we aim to decrease the threshold for programmers to create software product
lines and simplify the transition form a single system to a family of systems.

TODO Alternative to ifdef (preprocessor directives), AOP, FOP, DOP, ...

TODO Compare to other FOAs

TODO No crosscutting

The most prominent advantages are listed and described:

3.1. Easy to use

TODO no new language to learn, no new structures/architectue

3.2. Semantically clear

TODO features visible at the place where they affect the system.

TODO no intermediate representation

6



3.3. Robuust

TODO features stay up to date with respect to base

3.4. Timeless

TODO - timeless, works for all languages, even those to be created

4. Working Example

TODO Example from code or stockinfo/pricing example from [8]

5. Workflow

TODO User actions to create example

TODO Refer to tool, editor and feature model

6. Technical

Up until now, we have focused on what the desired result is of layered program-
ming. This section describes how it can be achieved. Three logical components
are required to realize the workflow described in section 5:

• a program for extracting/encoding layers and applying them
• an editor to visualize the layers
• a feature model to describe valid combinations of layers

6.1. Program

Two elementary operations are needed to support all the features of layered
programming: extract and apply. Extract takes two files and produces a patch
to convert the first file into the second. Apply uses this patch and applies it to
a file. These operations closely relate to the diff and patch algorithms.

Some constraints have to be met on the implementation for extract and apply
operations to ensure a correct result:

• a patch needs to remain applicable under minor, independent changes to
its base

• conflicting patches need to be detected and reported, rather than being
applied anyways.

The first constraint is clearly needed in the case the base needs to be changed.
It is also needed because it has to be possible to apply multiple independent
patches consecutively. A degree of fault detection is ensured by the second
constraint. Patches are applied in a fuzzy way, based on the context, which is
allowed to change. Applying a patch in the wrong place can result in hard to
find and hard to fix bugs.

7



6.1.1. Diff & Patch

We first investigated a possible implementation using the Linux diff and patch
commands. The diff command generates a patch file that can be used to turn
one file into the other with the patch command. Note that the -u flag was used
to make sure the unified format was used with a number of context lines.

We quickly discovered that the line difference calculated by the diff command
is not fine grained enough. Layers need to be allowed to make independent
changes on the same line like for example adding an argument to a function.

Another option is to use a character based difference algorithm. Myers et. al.
proposed a performant algorithm for this in [9]. It is implemented in Google’s
diff-patch-match library.

TODO Refrase above

TODO line diff - word diff - char diff

TODO use full semantics of source language: tree diff

TODO use heuristics (class, def, function, types, parantheses, ...)

6.1.2. Encoding

TODO Think of good, user friendly encoding

TODO Should support multiple files

TODO Investigate interaction with version management (git)

6.2. Editor

TODO Define features of editor

TODO Suggest implementation as plugin for jetbrains (intelij) or atom

6.3. Feature Model

TODO Layers organized in feature model

TODO Combination semantics encoded in FM

TODO FM in editor

6.4. Risks

TODO Is it robuust under changes to base

TODO What should happen with conflicting features?

TODO failed/wrong patch not detected leads to broken artifact.

8



TODO (system tests are needed to detect this)

TODO interaction with version control. How to resolve merge conflict?

TODO No crosscutting support (can be added maybe?)

TODO How to deal with optional layer interaction?

e.g.: B -> F1, B -> F2

what if F2 needs to change added code of F1

solutions:

- fixed with crosscutting support?

- new layer F3 from F1 and F2 (F1, F2 -> F3)?

- require F3 if F1 and F2 present in feature model?

- Allow F2 to immediately encode optional changes to F1 (put F3 part in F2).

7. Conclusion

TODO write

8. Future Work

TODO write

9



[1] Sven Apel, Christian Kastner, and Christian Lengauer. Featurehouse:
Language-independent, automated software composition. In Proceedings
of the 31st International Conference on Software Engineering, pages 221–
231. IEEE Computer Society, 2009.

[2] Don Batory and Sean O’malley. The design and implementation of hierar-
chical software systems with reusable components. ACM Transactions on
Software Engineering and Methodology (TOSEM), 1(4):355–398, 1992.

[3] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise
refinement. IEEE Transactions on Software Engineering, 30(6):355–371,
2004.

[4] Andreas Birk, Gerald Heller, Isabel John, Klaus Schmid, Thomas von der
Maßen, and Klaus Muller. Product line engineering, the state of the prac-
tice. IEEE software, 20(6):52–60, 2003.

[5] P Clements and CW Krueger. Being proactive pays off/eliminating the
adoption barrier. point-counterpoint article in. IEEE Software, 2002.

[6] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in soft-
ware product lines. In Software Engineering, 2008. ICSE’08. ACM/IEEE
30th International Conference on, pages 311–320. IEEE, 2008.

[7] Sebastian Krieter, Marcus Pinnecke, Jacob Krüger, Joshua Sprey, Christo-
pher Sontag, Thomas Thüm, Thomas Leich, and Gunter Saake. Featureide:
Empowering third-party developers. In Proceedings of the 21st Interna-
tional Systems and Software Product Line Conference-Volume B, pages
42–45. ACM, 2017.

[8] Mira Mezini and Klaus Ostermann. Variability management with feature-
oriented programming and aspects. In ACM SIGSOFT Software Engineer-
ing Notes, volume 29, pages 127–136. ACM, 2004.

[9] Eugene W Myers. An o (nd) difference algorithm and its variations. Algo-
rithmica, 1(1):251–266, 1986.

[10] Klaus Ostermann. Dynamically composable collaborations with delegation
layers. In ECOOP, volume 2, pages 89–110. Springer, 2002.

[11] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina
Schaefer. Synchronizing software variants with variantsync. In Proceedings
of the 20th International Systems and Software Product Line Conference,
pages 329–332. ACM, 2016.

[12] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico
Tanzarella. Delta-oriented programming of software product lines. Software
Product Lines: Going Beyond, pages 77–91, 2010.

[13] Ina Schaefer and Ferruccio Damiani. Pure delta-oriented programming. In
Proceedings of the 2nd International Workshop on Feature-Oriented Soft-
ware Development, pages 49–56. ACM, 2010.

10



[14] Yannis Smaragdakis and Don Batory. Implementing layered designs with
mixin layers. ECOOP98Object-Oriented Programming, pages 550–570,
1998.

[15] Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented
implementation technique for refinements and collaboration-based designs.
ACM Transactions on Software Engineering and Methodology (TOSEM),
11(2):215–255, 2002.

[16] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, and Thomas Leich. Featureide: An extensible framework for feature-
oriented software development. Science of Computer Programming, 79:70–
85, 2014.

[17] Wikipedia. Feature-oriented programming — wikipedia, the free encyclo-
pedia, 2017. [Online; accessed 4-December-2017].

11


	Introduction
	Related Work
	Motivation
	Easy to use
	Semantically clear
	Robuust
	Timeless

	Working Example
	Workflow
	Technical
	Program
	Diff & Patch
	Encoding

	Editor
	Feature Model
	Risks

	Conclusion
	Future Work

