
Building a Performance Model of the Tendermint

Concensus Algorithm

Jonas Vanden Branden

jonas.vandenbranden@student.uantwerpen.be

Abstract

In the current landscape of blockchain development, we are now confronted
with many limit of blockchains and distributed applications. We investi-
gate Tendermint, a blockchain concensus platform provides ’Byzantine fault-
tolerant replicated state machines in any programming language’. When
working with new technology and algorithms, it is educational to perform
thorough research on all aspects of these new systems to ensure correct and
efficient use. In this paper, the first steps are taken for modeling the Proof-
of-stake Tendermint Concensus algorithm in the light of performance.
’Stochastic Activity Networks’ are found to be a very interesting formalism
for modeling distributed concensus algorithms in related work.

Keywords: Blockchain, Performance, SAN, Stochastic Activity Networks,
Modeling, Mobius, Tendermint, Concensus

Preprint submitted to MDE Project January 29, 2018

mailto:jonas.vandenbranden@student.uantwerpen.be


1. Introduction

At present, the performance of the this concensus-algorithm is not re-
ally studied by modeling, although some experiments are performed by its
creators, as seen in figure 1. This can be an interesting starting point to
compare the early simulation results against real world experimental results.

Figure 1: Experimental performance results in [3]

The Byzantine Consensus Algorithm itself is descibed in details in the
github[1] documentation of Tendermint. In addition to the detailed expla-
nation of how it works, there is a state machine described which is used for
the nodes participating in the network. (see Fig. 4) The Tendermint plat-
form provides an application blockchain interface (ABCI) for developers to
’plugin’ their application logic into the Tendermint concensus engine.

In this paper, we will explore the possibilities of modeling such algorithm
effectively. In the second chapter, we will investigate the reasons for modeling
this system. In the third chapter, the formalism used is discussed in relation
to alternatives and related work. In the fourth chapter, the software tool
used (Möbius) is proposed. In the fifth chapter, the concensus algorithm is
dissected and partly modeled as a Hiërarchical Stochastic Activity Network.
In chapter six, the conclusions are drawn, the most important obstacles are
named and ideas for future work are suggested.

2



2. Why Modelling?

Having a model of the concensus algorithm to simulate performance in
various scenario’s would be interesting for both the low level concensus de-
velopers (to have a good way of predicting impact of algorithm changes on
performance) as the higher level application developers (to have a way of
simulating general throughput/latency performance when scaling up the in-
frastructure running their application).

3. Formalism of choice: Stochastic Activity Networks

When approaching this problem of modeling the distributed model, a
fundamental question is which formalism to use to represent the concensus
algorithm. (Stochastic) Reward Nets are an interesting way of modeling such
situations, as the authors of [10] have done when modeling the Hyperledger
Fabric pBFT concensus process, as can be seen in Fig. 2, where a situation
of three processes is modeled.

Figure 2: SRN model of Hyperledger Concensus

However, this kind of modeling gets complex quickly, due to lack of hier-
archical structures and reusability, and limited expressiveness. As previous
research has indicated ([5]), there is another formalism (also an extension on

3



SPN’s) that is better at representing such processes; (Hierarchical) Stochas-
tic Activity Networks (or SAN’s). These networks extend SPN’s with two
elements; Input and Output gates. More formal definitions and concepts are
described in [4].

4. Tool of choice: Möbius

The Möbius tool [12] is a modeling tool developed at the University of
Illinois, aimed at validation of system performance (among other aspects).
It supports Stochastic Activity Networks and is free for educational use.
The tool enables creation of Atomic SAN’s and multiple models can be com-
posed using the Repl/Join formalism, which enables us to create multiple
’instances’ of models (replication) to run and combine the states of multiple
models (join). A reward model can be used to define the scoring model of
an atomic or composed model.
A study model can be used to investigate the behavior of systems for sev-
eral different parameter values, as a set, a range or a more advanced ’Design
of Experiments’. Models can be ’solved’ by either simulation or a formal
approach.An overview of all the components can be seen in figure 3.

Figure 3: Möbius framework components [13]

4



5. Building the Model

We will dissect the Tendermint concensus algorithm analogous to the
method used in chapter 6 of [7].

5.1. The Algorithm

As mentioned before, the algorithm is described extensively on the Ten-
dermint github wiki [1]. We will follow the structure of that page to dissect
the states of the state machine (see fig 4) that describes the algorithm.

Figure 4: The algorithm state machine [2]

Terminology

• The network is composed of optionally connected nodes. Nodes di-
rectly connected to a particular node are called peers.

• The consensus process in deciding the next block (at some height H)
is composed of one or many rounds. NewHeight, Propose, Prevote,
Precommit, and Commit represent state machine states of a round.
(aka RoundStep or just ”step”).

• A node is said to be at a given height, round, and step, or at (H,R,S), or
at (H,R) in short to omit the step. To prevote or precommit something
means to broadcast a prevote vote or precommit vote for something.

5

https://github.com/tendermint/tendermint/wiki/Byzantine-Consensus-Algorithm


• A vote at (H,R) is a vote signed with the bytes for H and R included
in its sign-bytes.

• +2/3 is short for ”more than 2/3”

• 1/3+ is short for ”1/3 or more”

• A set of +2/3 of prevotes for a particular block or < nil > at (H,R) is
called a proof-of-lock-change or PoLC for short.

Propose Step (Height H, Round R)

Upon entering Propose:

• The designated proposer proposes a block at (H,R).

The Propose step ends:

1. After timeoutProposeR after entering Propose.
→ goto Prevote(H,R)

2. After receiving proposal block and all prevotes at PoLC-Round.
→ goto Prevote(H,R)

3. After common exit conditions*

Figure 5: ProposeStep atomic SAN prototype

6



Prevote Step (Height H, Round R)

Upon entering Prevote, each validator broadcasts its prevote vote.

• First, if the validator is locked on a block since LastLockRound but now
has a PoLC for something else at round PoLC-Round where LastLockRound <
PoLCRound < R, then it unlocks.

• If the validator is still locked on a block, it prevotes that.

• Else, if the proposed block from Propose(H,R) is good, it prevotes that.

• Else, if the proposal is invalid or wasn’t received on time, it prevotes
< nil >.

The Prevote step ends:

1. After +2/3 prevotes for a particular block or < nil >.
→ goto Precommit(H,R)

2. After timeoutPrevote after receiving any +2/3 prevotes.
→ goto Precommit(H,R)

3. After common exit conditions*

Precommit Step (Height H, Round R)

Upon entering Precommit, each validator broadcasts its precommit vote.

• If the validator has a PoLC at (H,R) for a particular block B, it (re)locks
(or changes lock to) and precommits B and sets LastLockRound = R.

• Else, if the validator has a PoLC at (H,R) for < nil >, it unlocks and
precommits < nil >.

• Else, it keeps the lock unchanged and precommits < nil >.

A precommit for < nil > means ”I didn’t see a PoLC for this round, but I
did get +2/3 prevotes and waited a bit”.

The Precommit step ends:

1. After +2/3 precommits for < nil >.
→ goto Propose(H,R+1)

2. After timeoutPrecommit after receiving any +2/3 precommits.
→ goto Propose(H,R+1)

3. After common exit conditions*

7



*Common exit conditions

Common exit conditions and their actions are:

1. After +2/3 precommits for a particular block.
→ goto Commit(H)

2. After any +2/3 prevotes received at (H,R+x).
→ goto Prevote(H,R+x)

3. After any +2/3 precommits received at (H,R+x).
→ goto Precommit(H,R+x)

Commit Step (Height H)

• Set CommitTime = now()

• Wait until block is received
→ goto NewHeight(H+1)

Figure 6: CommitStep atomic SAN

NewHeight Step (Height H)

• Move Precommits to LastCommit and increment height.

• Set StartTime = CommitTime+timeoutCommit

• Wait until StartTime to receive straggler commits
→ goto Propose(H,0)

8



Figure 7: NewHeight atomic SAN prototype

Figure 8: Node Join prototype

5.2. The Modeling Activity

Analogous to the designated coordinator each round of the � algorithm
discussed in [7], the Tendermint concensus works with a designated proposer
which is chosen by a deterministic and non-choking round robin selection
algorithm.[1]. We will try to describe each step in the algorithm as a separate
sub-model. A node will be modeled by using the Join facility.

The round-robin algorithm is modeled in a separate model that is joined
with the replicated node instances.

6. Conclusion

While I have been able to define a proper formalism and create a skeleton
of what the model should look like, it has not yet been fully developed due to
the complexity of the multi-agent based concensus algorithm. Therefore, it is
not possible to use it in simulation to gain knowledge about its performance
at this point in time.
I have experienced Stochastic Activity Networks as a competent extension

9



Figure 9: Node Replication prototype

of Stochastic Petri Nets, which enables more complex activity workflows for
performance modeling.

Difficulties

While developing the model and submodels, I have experienced some ob-
stacles;
The algorithm description is sometimes more ambiguously phrased as it
seems at first sight. This makes it difficult to implement the steps. Re-
working the algorithm desciption into more clear pseudo-code might help
when further developing the model. There is also not a very clear view on
what is communicated between nodes, what takes place at a single node and
what certain terms mean exactly.
Besides that, it seemed difficult to access unique (non-shared) instance vari-
ables in a join, which would be necessary to couple the round-robin for
choosing the designated proposer. This might be due to limitations of the
Replicate-Join formalism, or a wrong approach to the problem.

Future work

Naturally, the first work that should be done is to completely finish the
model in accordance to the algorithm. When completed, simulations can
be executed and compared to real life experiments. Possible extensions at
that point would be a more advanced networking submodel to mimic a more
realistic network environment.
In the current model structure, there is also no dynamic way of scaling in the
amount of node instances, a rework of this structure could be an interesting
addition as well.

10



References

[1] Tendermint Github repository (https://github.com/tendermint/tendermint)

[2] Tendermint ReadTheDocs page(http://tendermint.readthedocs.io/)

[3] Ethan Buchman, ”On the Design and Accountability of Byzantine Fault
Tolerant Protocols”, Tendermint, University of Guelph, Jan 27 2017

[4] Sanders, William H., and John F. Meyer, ”Stochastic Activity Networks:
Formal Definitions and Concepts”, Springer, Berlin, Heidelberg, 2000

[5] A. Schiper et al, ”Performance Analysis of a Consensus Algorithm Com-
bining Stochastic Activity Networks and Measurements”, Universita di
Firenze, 2002

[6] Morteza Golkari & Elham Arshad, ”Stochastic Activity Networks” - pre-
sentation,

[7] Andrea Mario Coccoli, ”On Integrating Modelling and Experiments in De-
pendability and Performability Evaluation of Distributed Applications.”,
PhD thesis, University of Pisa, Italy, 2002

[8] Rajitha Yasaweerasinghelage, Mark Staples and Ingo Weber ”Using ar-
chitectural modelling and simulation to predict latency of blockchain-based
systems”, University of New South Wales, Australia, 2017

[9] Rajitha Yasaweerasinghelage, Mark Staples and Ingo Weber, ”Predicting
Latency of Blockchain-Based Systems Using Architectural Modelling and
Simulation”, University of New South Wales, Australia, 2017

[10] Sukhwani, Harish, et al. ”Performance Modeling of PBFT Consensus
Process for Permissioned Blockchain Network (Hyperledger Fabric)”, In
Reliable Distributed Systems (SRDS), 2017 IEEE 36th Symposium on
(pp. 253-255). IEEE. 2017

[11] Jae Kwon, ”Tendermint: Consensus without Mining”, Cornell Univer-
sity, 2014

[12] Möbius Model-Based Environment for Validation of System Reliability,
Availability, Security, and Performance, www.mobius.illinois.edu, Univer-
sity of Illinois, 2018

11

https://github.com/tendermint/tendermint
http://tendermint.readthedocs.io/
https://www.mobius.illinois.edu


[13] Möbius wiki www.mobius.illinois.edu/wiki, University of Illinois, 2018

12

https://www.mobius.illinois.edu/wiki

	Introduction
	Why Modelling?
	Formalism of choice: Stochastic Activity Networks
	Tool of choice: Möbius
	Building the Model
	The Algorithm
	The Modeling Activity

	Conclusion

