1.Formal verification

- Safety (can a bad state be reached?)
- Liveness (can you reach a desirable state?)

Continuous dynamical system

- Continuous dynamical system
 - S = (X, f)
 - $X = X_1 \dots X_n = [0,m) \times \dots \times [0,m)$ in \mathbb{R}^n
- Dynamics:
- •
- Solution:
- •

- Timed Automata $A = (Q, C, I, \Delta) = (states, clocks, invariants, transition)$ $\Delta = (old, guard, transformation, new)$
 - A time step: $(q, \mathbf{z}) \xrightarrow{t} (q, \mathbf{z} + t), t \in \mathbb{R}_+$ such that $\mathbf{z} + t$ satisfies I_q , and $\mathbf{z} + t$ is the result of adding t to clocks active in \mathbf{z} .
 - A discrete step: $(q, \mathbf{z}) \xrightarrow{\delta} (q', \mathbf{z}')$, for some transition $\delta = (q, g, \rho, q') \in \Delta$, such that \mathbf{z} satisfies g and \mathbf{z}' is the result of applying ρ to \mathbf{z}

- 1. Indirect method
 - \rightarrow transform original system into a model
 - \rightarrow simpler class, easier verification
 - \rightarrow decidable

2.

1.2. Partition state space into cells

• Cube:
$$X_v = [v_1, v_1 + 1) \times \dots \times [v_n, v_n + 1)$$

• Successor/predecessor:

•
$$\sigma^{+i}(..., v_i ...) = \sigma^{+i}(..., v_i + 1 ...)$$

•
$$\sigma^{-i}(..., v_i ...) = \sigma^{-i}(..., v_i - 1 ...)$$

- Common facet: (n-1) dimensional intersection of 2 cubes
- I-slice with r: set of cubes $X_{i,r}$: $r \le x_i \le r+1$

2.3. Define a transition between neighboring cells

Definition 4 (Abstraction by Automata). The automaton $\overline{A} = (V, \overline{\delta})$ is an abstraction of S if $\overline{\delta}$ consists of all pairs $(v, \sigma^{+i}(v))$ of cubes such that f_i admits a positive value on their common facet and all pairs $(v, \sigma^{-}(v))$ such that f_i admits a negative value on their common facet.

1.4. Add clocks (temporal logic)

- 2 clocks per dimension
- One general clock

Safety example

- Leaky bucket
 - і. II.
 - 11.

- Dynamical System
 I. X = R
 - II.
- Solution

Source: http://math.usu.edu/~powell/biomath/lb-02/lb-02.html

Solution

- One dimensional
- Cubes of the form:
- Cubes are lines
- Facets are points
- Slices are the cubes itself

Transitions:

- I. From A to B if the value of f < 0 on their common facet
 II. From C to D if the value of f > 0
- II. From C to D if the value of f > 0 on their common facet

Stop here?

Stop here?

Fig. 1. (a): A simple continuous system with constant derivatives. The states reachable from the initial cube lie between the two arrows and their cube abstraction is shaded; (b) The automaton derived according to Definition 4 in which the whole state space is reachable.

• Cannot stay in cube for more than: $1 / f_{v}$

Assume f_{min} and f^{max} are the min and max derivates for a certain interval

- Cannot stay in slice for more than:
- $t_i^{max} = 1 / f^{max}$
 - •
- Cannot leave slice in less time than:

Extremal values in a cube:

- Monotonic decreasing function
- Max value at top of cube
- Min value at bottom of cube
- Minimal absolute = min value

Extremal values in a slice = cube

- Cannot stay in cube for more than:
- Assume f_{min} and f^{max} are the min and max derivates for a certain interval
- •
- Cannot stay in slice for more than:
 t_i^{max} = 1 / f^{max}
- Cannot leave slice in less time than:
 - $t_i^{max} = 1 / f_{min}$

Clocks:

One general clock:

• z – reset at every transition

Two clocks per dimension:

- z₁⁺ reset when entering slice, from the left
- z₁⁻ reset when entering slice_i
 from the right
- We will only use first one for simplicity

Clocks:

Invariant:

Transition:

- successor
- predecessor

Predecessor:

What's next?

- Transformation CT-CBD to Timed Automata (Uppaal)
- Worked out non-trivial use case
- Extension/Modification?