
To appear in the Journal of Software and Systems Modeling

Matters of (Meta-) Modeling

Thomas Kühne

Darmstadt University of Technology, Darmstadt, Germany
e-mail: kuehne@informatik.tu-darmstadt.de

Abstract With the recent trend to model driven engineering
a common understanding of basic notions such as “model”
and “metamodel” becomes a pivotal issue. Even though these
notions have been in widespread use for quite a while, there
is still little consensus about when exactly it is appropriate
to use them. The aim of this article is to start establishing a
consensus about generally acceptable terminology. Its main
contributions are the distinction between two fundamental-
ly different kinds of model roles, i.e. “token model” versus
“type model”1, a formal notion of “metaness”, and the consi-
deration of “generalization” as yet another basic relationship
between models. In particular, the recognition of the funda-
mental difference between the above mentioned two kinds
of model roles is crucial in order to enable communication
among the model driven engineering community that is free
of both unnoticed misunderstandings and unnecessary disa-
greement.

Keywords model driven engineering, modeling, metamo-
deling, token model, type model

1 Introduction

Everytime a new research area gains momentum, the task of
defining its central notions needs to be addressed. Communi-
ties can take a surprisingly long time to come to an agreement
about what notions like “object” and “component” should en-
compass. Although such efforts can be tedious and are re-
nown for causing research meetings to stall on the “definition
problem”, they are necessary in order to enable unambiguous
communication among community members. A number of
efforts to establish an unambiguous vocabulary (e.g., [1], [2])
testify to the need for a shared conceptualization in model en-
gineering. If the community continues to maintain different

1 The terms “type” and “token” have been introduced by C.S.
Peirce, 1839–1914.

ontologies for the basic terms of their discipline, any com-
munication may create the illusion of agreement where there
is none, i.e., unnoticed misunderstandings, and raise barriers
of communication where they are just accidental.

In the following we will focus on the term “model” in the
context of model driven engineering. Our models are thus all
language-based in nature, unlike, e.g., physical scale models
and they describe something as opposed to models in mathe-
matics which are understood as interpretations of a theory [3].

In an attempt to define the scope of the notion “model” we
should consider how it has been traditionally used in softwa-
re engineering. From this perspective, a model is an artifact
formulated in a modeling language, such as UML [4], des-
cribing a system through the help of various diagram types.
Typically, such model descriptions are graph-based and are
rendered visually.

In our model driven engineering context such a charac-
terization would be too narrow. Other artifacts, such as Java
programs, are considered to be models as well, since they can
also be understood as describing systems (e.g., all possible
execution traces of a program). This liberal use of “model”
is the result of applying the powerful principle of unification
(“Everything is a model” [5]). Its intent is to get as much out
of the new development paradigm as possible. For instance,
if transformations are considered models as well [5] then—
since the fundamental operation in model driven engineering
is a “model to model” transformation—using the standard ge-
neral infrastructure, one may obtain a particular transforma-
tion by transforming another one.

Obviously, even if “everything is a model” were uncon-
ditionally true, this would not relieve us from the task of de-
fining the fundamental model relationships. At least in a re-
lative way one needs to be able to speak about different roles
(such as system, model and element) and corresponding rela-
tionships (such as representation and instantiation), indepen-
dently of what is and what is not considered a model, e.g.,
whether or not the modeled system is a model itself, or the
elements of a model are models again, etc.

Not before the same “notion definition” task was comple-
ted for the basic notions of object-orientation, i.e., not before

2 Thomas Kühne

notions like instantiation and inheritance were fully under-
stood, the full potential of object-orientation was unfolded.
For instance, a solid notion of subtyping as a discipline for
inheritance is crucial to build safely reusable software. We
need to achieve the same clarity and consensus for the ba-
sic notions of model driven engineering as well, in order to
unlock its full potential.

The remainder of this article first attempts to home in on
a characterization of “model” in the context of model driven
engineering that everyone may subscribe to. Next we will di-
stinguish two fundamentally different kinds of model roles.
Only after the difference between these two kinds has been
made explicit, will we be able to further define basic model
notions and properties, such as “metamodel” and “generali-
zation” between models. We complement this discussion by
relating the notions “metamodel” and “language” with each
other and then conclude.

2 What is a Model?

In this section we attempt to define a scope for the notion
“model” that is broad enough to include everything useful,
but narrow enough so that it does not become useless. After
all, if a notion includes everything, it loses its discrimination
property. As an analogy, practically everything could be cha-
racterized as an “object” but as a technical term it only provi-
des value in communication if not everything is included by
the term “object”. Likewise the notion “model” should inclu-
de “transformation” but not in an opportunistic manner (if it
is considered useful then it is deemed correct) but in a way
that includes “transformation” in a well defined scope of suf-
ficient size but without unnecessary breadth. In our context
the following definition is useful:

A model is an abstraction of a (real or language-based)
system allowing predictions or inferences to be made.

While the aim of this article is not to present any proofs or
a complete formalization of modeling, we nevertheless try to
disambiguate and concisely present the essence of informal
textual statements with some formal syntax and hence denote
the relationship between a system S and a model of it as

S � M. (1)

In general, � establishes a many-to-many relationship since
one model may describe several systems and one system may
be described by several models. Mathematically, � therefore
is a binary relation. A subset of this relation is the represen-
tation2 relation ρ, hence

ρ(S, M) → S � M.

While the “model-of” (�) relation includes any accidental,
legally conforming “system / model” pair, relation ρ is meant

2 Here, we use “representation” as in “be a placeholder / repre-
sentative for”, not to be confused with “presentation” as in “concrete
syntax for communication purposes”.

to capture only such pairs where the model is specifically in-
tended to represent the corresponding system. We are thus
able to state that a model M2 models another model M1, but
that both represent a single original system:

S � M1 ∧ ρ(S, M1)
M1 � M2 ∧ ρ(S, M2)

as opposed to ρ(M1, M2).

Fig. 1 shows a corresponding example featuring two map mo-
dels. Fig. 1 and most other figures use standard UML notati-
on [4] with the usual meaning of objects, classes, associati-
ons, dashed dependency lines with “instance-of” stereotypes
to denote instantiation, etc. Only a few non-UML elements
are used for illustrative purposes. Associations are often an-
notated with the notation we successively introduce in order
to connect the textual definitions to the examples shown in
figures. For easy reference, Tab. 2 serves as a final summa-
ry to the notation introduced and Fig. 7 illustrates the most
important relationships accordingly.

In order to be able to discuss various model properties
later on, we also assume an abstraction function α that pro-
duces a model from a system:

M = α(S). (2)

Similar in spirit to [6], we are assuming that S is already
available in a formal representation. For instance, a structured
set “(S, rs)” with elements (from S) and relationships (from
rs) between those elements is an adequate choice.

If System is the real (e.g., physical) system under stu-
dy, then S can be thought of as being generated by a process
“modeling” from System. While one could argue that pro-
cess “modeling” embodies the very operation we are trying to
study, our approach works without any loss of generality. For
our purposes it is irrelevant whether the system we abstract
from, conceptualize, etc., is real or already is a representation
of a real system.3 Any philosophical and epistemological is-
sues of the process “modeling” , e.g., how to extract structure
and properties from a real system with practically infinitely
many properties and possibly unobservable behavior into a
formal representation, are not of interest to us in this context,
since we are focusing on “model” as a technical term in mo-
del driven engineering rather than investigating the process of
creating representations of reality.

2.1 Model Features

According to Stachowiak [7] a model needs to possess three
features (see Tab. 1). The first two features are covered at
once if one informally speaks of a model as a “projection”,
as this implies both that something is projected (the original)

3 Actually, we do loose the property of real systems to be non-
language-based, i.e., not being an expression of a language, but this
does not become relevant before section 5.

Matters of (Meta-) Modeling 3

mapping feature A model is based on an original.4

reduction feature A model only reflects a (relevant) se-
lection of an original’s properties.

pragmatic feature A model needs to be usable in place of
an original with respect to some pur-
pose.

Table 1. Model Features according to Stachowiak.

and that some information is lost during the projection. For-
mally, relating to equation 2:

α = τ ◦ α′ ◦ π. (3)

Model abstraction (α) then consists of projection (π), some
further abstraction (α′) on elements (including relationships),
and a translation τ to another representation, i.e., the mode-
ling language. With projection π we associate any filtering of
elements both reducing their number and individual informa-
tion content. Projection π is an injective homomorphism, i.e.,
a structure preserving operation.

Following [8], we regard a function h : X �→ Y as a
homomorphism if

h(a ⊕ b) = h(a) ⊗ h(b)

where ⊕ is an operation on X and ⊗ is an operation on Y .
As a result, π preserves the structure of the original for tho-
se parts that it retains and creates a one-to-one relationship
between target and (a subset of the) source.

For later reference, we label the reduced intermediate re-
sult between projection and further abstraction as:

Sr = π(S) (4)

Exactly what information of the system is left after pro-
jection, depends on the ultimate purpose of the model—Sta-
chowiak’s third feature—the pragmatic useability of the mo-
del, i.e., who the model is for and for what purpose. Stein-
müller [9] even includes both the sender and the recipient as
being relevant. According to Steinmüller a model is informa-
tion

– on something (content, meaning),
– created by someone (sender),
– for somebody (receiver),
– for some purpose (usage context).

A common purpose for a model is that it is used in place
of the system. Any answers obtained from the model should
then be the same as those given by the system provided the
model is adequate [1] / correct [10]. Typically, the motivation
for using a model is cost-saving as it is often cheaper and/or
quicker to obtain answers from a model than from the system.
Often models are even known to be imprecise or false in so-
me respect, but this does not automatically mean that they
are inadequate. Such imprecisions, at best, may not affect the
properties of interest at all or, slightly worse, may just make
their evaluation more uneconomic or, worse, skew them but
to an acceptable extent only.

4 We have so far referred to the original as the “system”.

2.2 Motivation for Modeling

In software engineering, models typically come in two fla-
vors: descriptive and prescriptive. Descriptive models are used
to capture some knowledge, e.g., requirements, a domain ana-
lysis, etc.

Prescriptive models (aka, “specification models” [10]) are
used as blueprints (construction plans) for system designs,
implementations, etc. Nowadays, the main purpose of blue-
prints is to support planning and early validation, i.e., finding
errors as early as possible and partially evaluating a system
before it is realized, but the value obtainable from their pre-
scriptive nature is limited because of the lacking preciseness
and rigor of their meaning. It is one of the primary goals of
model driven engineering to shift the emphasis from infor-
mal, non-binding models to rigorous, binding models.

Note that the idea of a model as a construction plan is,
in principle, in conflict with the required “mapping” feature.
There is no “original” to map the model to (yet). Still, Web-
ster’s new encyclopedic dictionary [11] includes the followi-
ng definition of “model”:

a) a theoretical projection of a possible or imaginary system.

In other words, the “original” might be something yet to be
built or it may remain completely imaginary. Only the former
possibility seems to be of relevance in our context and we
still accept construction plans as models since there clearly
is an intended system the model will represent. In order to
deemphasize the connotation of “original” as preceding the
model in time with respect to existence, a sometimes more
suitable term for “original” is “subject”.

2.3 Are Transformations Models?

So far, our notion of “model” is in accordance with establis-
hed definitions, but does it include unconventional interpreta-
tions of model, such as “transformation”? In fact, a (model-
to-model) transformation is indeed information on a mapping
from one model to another, created by a transformation en-
gineer, for the transformation engine, in order to automate a
translation process. So a transformation refers to an original
(the actual mapping links between actual models) and only
reflects relevant properties of the original since it does not
spell out all individual mapping links but only describes the
mapping scheme in terms of the model languages. This is true
as long as one understands “transformation“ as ”description
of a transformation function”. If we interpret “transformati-
on” to be all the actual links from all elements from the source
model to all elements of the target model then transformati-
ons should not be considered as models, as we can then no
longer point out any reduction feature.5 This view is in ac-
cordance with the terminology offered by [2], where actual

5 Unless, of course, the transformation is a model of a real trans-
formation going on between the originals of the respective source
and target models. However, this is an exceptional case we are not
further considering here.

4 Thomas Kühne

tokenModelOf

Frankfurt

Munich

Nürnberg

Darmstadt

A5

A3

A9 tokenModelOf MunichDarmstadt A3

tokenModelOf

⊲

⊲ ⊲

Fig. 1. Token Models and Model Transitivity

connections/links are referred to as “transformationInstance”
and only descriptions of “transformationFunctions” are refer-
red to as “transformationModels”.

2.4 A Copy is not a Model

Obviously, for the sake of making as many artifacts as possi-
ble eligible to be considered models, we could drop the de-
mand on models to have a reduction feature. However, this
could be the threshold beyond which the notion starts dete-
riorating into something more or less meaningless.

Note that we are only able to speak about the absence
of reduction because our subjects are finite representations
already. Any representation of a real world subject automati-
cally implies reduction and thus can be granted model status.

In the context of descriptions, whose subjects are finite
formal representations, we may even consider accepting ano-
ther of the definitions for “model” from Webster’s new ency-
clopedic dictionary [11]—

b) a small but exact copy of something

—as long as “exact” refers to the properties one wants to re-
tain but is not understood to mean “complete”.

If I build a car according to an original being precise in
every minute detail, I have not constructed a model but a co-
py.6 If I use the copy in a crash test, I have not performed a
model simulation, but a real test run. Exact copies neither of-
fer the advantages of models (typically cost reduction) nor do
they entail their disadvantages (typically inaccuracy with re-
gard to the original). In other words, “no abstraction” → “no
model”. If, in order to maximize the unification principle, we
would still accept copies as models then we should at least
refer to them as degenerate models.

3 Kinds of Model Roles

Intriguingly the discussion so far has not had to take into ac-
count the existence of two fundamentally different kinds of
models. If in personal communication one expert thought of
the one kind and another expert thought of the other kind,

6 In our context we can also refute the model status of the copy by
observing that it is not a language-based description of an original.

so far they would have always been in agreement. However,
as soon as further characterizations are attempted, such as
“transitivity of the ‘model-of’ relationship” or “under which
circumstances is a model a metamodel?”, the experts would
start disagreeing and may only consolidate their views again
when discovering their different mindsets.

There are of course many ways in which one can distin-
guish models, such as “product versus process models” or
“static versus dynamic models” but for the following discus-
sion these differences are irrelevant. The two kinds of models
which are able to create communication chasms between ex-
perts talking about basic modeling notions are token and type
models. As the section title indicates these kinds are not ab-
solute properties of models but depend on their relationship
to the system.

3.1 Token Models

A typical example for a token model is a map (see the middle
part of Fig. 1). Note that here (on the left hand side of Fig. 1)
and elsewhere we use depictions of real world systems for
model subjects for illustrative purposes only, so that the lat-
ter can be better recognized as subjects as opposed to being
regarded as models themselves. In our formal treatment, ho-
wever, we continue to assume model subjects to be represen-
tations already.

Elements of a token model capture singular (as opposed
to universal) aspects of the original’s elements, i.e., they mo-
del individual properties of the elements in the system.

When using UML, a natural choice for creating a token
model is the object diagram since it captures the system’s ele-
ments that one is interested in in a one-to-one mapping and
represents them with their individual attribute values. Note,
however, that depending on the nature of the subject, class
diagrams may also be appropriate (see section 3.2, in particu-
lar Fig. 3).

Formally, with respect to equation 3 we have

α′ = id (5)

In other words, the abstraction process for creating token mo-
dels involves no further abstraction beyond projection and

Matters of (Meta-) Modeling 5

translation (see equation 3).7 As a consequence, elements of
a token model are designators for those elements in the sy-
stem S which are also retained in the reduced system Sr (see
equation 4). We therefore have a one-to-one correspondence
between relationships and elements in the model M and a
subset of these in system S. This property implies that the
“token-model-of” relationship must be transitive. A chain of
token models can be regarded as a chain of designators, li-
nearly referencing each other and then, ultimately, the sy-
stem. Hence, the designators of the last token model transi-
tively reach down to a subset of the system’s elements.

It is instructive to realize that coarsely capturing elements
of a system in a model (through π)—e.g., not distinguishing
between two-lane or three-lane motorways and representing
them all as just plain “motorway” elements—must not be
confused with generalization. The former is a projection of
elements onto the same number of elements designating the
originals in an abstract way, i.e.,

π(e1) = π(e2) � e1 = e2

whereas generalization is the union of two or more speci-
al concepts into one general concept. However, there is of
course a correspondence between the equivalence relation-
ship ∼π mapping different source elements onto the same
target element–

e1 ∼π e2 → π(e1) = π(e2)

–and generalization: The extension of a general concept may
exactly define the elements which are considered to be equi-
valent to each other by ∼π, in the presence of more differen-
tiating, special concepts.

In the context of this article, a “concept” implies an in-
tensional abstraction of predicates which characterize the sa-
me elements in a description independent manner. For instan-
ce, we know that UnfeatheredBipeds(X) ∼ ScriptUsing-
Mammal(X) so that one may refer to the characterized ele-
ments with the concept HumanBeing(X). If C is a concept
we use ε(C) to refer to its extension (all elements falling un-
der the concept C) and ι(C) to refer to its intension (a con-
junction of predicates characterizing whether an element be-
longs to the concept or not) [12], so that

ε(C) = {x | P (x)}, where P = ι(C)

Hence, with respect to “generalization” we can state intension-
ally—

∀x : ι(Cspecial)(x) → ι(Cgeneral1)(x)

—and extensionally:

ε(Cspecial) ⊆ ε(Cgeneral).

7 Here, we restrict our notion of “model” to pure abstractions
of their subjects. Any additional information they might contain—
potentially completely unrelated to the subject—are not considered
by this treatment.

In UML parlance token models are sometimes referred
to as “snapshot models” since they can be used to capture a
single configuration of a dynamic system. Their fine-grained
representation of a system—retaining system elements in a
one-to-one fashion—makes them ideal for capturing detail
that changes dynamically in time. Other possible names for
token models are “representation model” (due to the direct
representation character), “instance model” (since the model
elements are instances as opposed to types), “singular mo-
del” (because the elements designate individuals rather than
universals), or “extensional model” (as they are enumerative
with respect to system elements).

In software engineering, stereotypical usages for token
models include the capturing of initial system configurations,
or system snapshots as a basis for simulations (e.g., regarding
performance). Token models are also often what people have
in mind when talking about models in general. The often used
example of a building plan for a house, is a token model.

3.2 Type Models

As we have seen in the previous section, token models have
many useful applications. However, they do little to condense
complex systems to concise descriptions, due to their one-to-
one representation of elements in the (relevant part of the) sy-
stem. Type models are much more economic in this respect.
For good reasons the human mind exploits the power of ty-
pe models by using object properties (e.g., four legged, fury,
sharp teeth, and stereovision) to classify objects (e.g., as a
predator) and then draw conclusions according to properties
known about the object class (e.g., “dangerous”). This way
the human mind does not need to memorize all particular
observations and arrive at decisions afresh, but just collects
concepts and their universal properties [13].

Most models used in model driven engineering are type
models. In contrast to token models, type models capture the
universal aspects of a system’s elements by means of classi-
fication.

Fig. 2 shows (at the top) a type model for the modeled
country, using UML’s natural diagram kind for type models:
the class diagram. Instead of representing all the particular
elements and their links, the type model captures the types
of interest and their associations only. Thus “schema mo-
del”, “classification model”, “universal model”, or “intensio-
nal model” are further appropriate names.

Formally, with respect to equation 3 we have—

α′ = Λ (6)

—where Λ is a classification function, classifying elements
(including relationships), which are considered equivalent to
each other with respect to certain properties, under one re-
spective type. Hence, the complete abstraction function for
creating type models involves classification in addition to pro-
jection and translation (see equation 3).

Function Λ is also a homomorphism. If it classifies every
system element (from Sr) into its own singleton set then it

6 Thomas Kühne

tokenModelOf

«i
ns

ta
nc

eO
f»

Frankfurt

Munich

Nürnberg

Darmstadt

A5

A3

A9

Frankfurt

Munich

Nürnberg

Darmstadt

A5

A3

A9

RoadCity 1..∗2 RoadCity 1..∗2

typeModelOf

⊲i

⊲
t

t
⊲

Fig. 2. Kinds of Model Roles

is even an isomorphism. Of course, the usefulness of type
models stems from the fact that this is typically not the case.

One may check whether a model Mtoken conforms to
another model Mtype (e.g., whether the bottom-right token
model in Fig. 2 conforms to the type model above it), by at-
tempting to construct a homomorphism Λ from Mtoken to
Mtype .

Such a homomorphism Λ (see equation 6), implies an
equivalence relation ∼Λ on Mtoken , defining which objects
and relationships are to be considered equivalent, i.e., be of
the same type:

e1 ∼Λ e2 ↔ Λ(e1) = Λ(e2).

Hence, Mtype may be regarded as the quotient of Mtoken

with respect to the equivalence relation ∼Λ.

Mtype = Mtoken / ∼Λ

Since type models are created by classification we may
also say that model Mtoken is an “instance of” model Mtype .

Before we proceed to discuss why recognizing the diffe-
rence between token and type models is important, we should
clarify that being a token or a type model depends on the re-
lationship to the modeled system, not on any intrinsic model
property.

3.3 Why Roles?

Fig. 3 shows (at the middle top) a model that is usually consi-
dered a type model as its elements designate universals, i.e.,
classify individual objects existing during the runtime execu-
tion of a Java program. However, at the same time it is also
a token model for the corresponding Java classes. The class
diagram does not capture the universal aspects of the Java
classes but directly represents them in a one-to-one mapping.

Hence, one needs to be careful to not judge the role of a
model only by its contained elements. Consider the product
model of a pet store. Whereas normally an element named
“Collie” would represent a concept with an extension, i.e.,
many collie instances, in the case of the pet store it is simply
an object representing one of the many animal types one may
order. “Collie” then just designates an individual (one choice

in the shop) and hence the corresponding model is a token
model despite the fact that “Collie” is usually associated with
a type.

Conversely, the use of an element “Lassie” typically indi-
cates that the respective model is a token model for particular
collies. Yet, it could be a type model for actual collie instan-
ces, in which “Lassie” classifies all those collies that could
play the role of the movie character “Lassie”. Indeed, famous
“Lassie” was brought to life by many “Lassie” dog actors.
Once again, the standard use of “Lassie” as an object is not
a reliable indicator of the actual nature of the corresponding
model.

In characterizing a model as being either a token or a ty-
pe model, one must therefore always specify with respect to
which model subject. More precisely, as clearly demonstra-
ted by Fig. 3, models as such, may not be characterized at all,
but one may only characterize the reference mode of a model
with respect to a subject.

3.4 Classification versus Generalization

Equations 5 and 6 show that element abstraction (α′) resolves
to id for token, and to Λ for type models respectively. In both
cases one might be tempted to introduce Γ as a generalization
function and consider α′ = Γ for token, and α′ = Γ ◦ Λ for
type models respectively.

The generalization function Γ maps equivalent subject
elements onto the same model element, using some equiva-
lence relation ∼Γ . This must not be confused with classifica-
tion (Λ) since the intention of the latter is to obtain a universal
for equivalent elements, whereas the intention of generaliza-
tion is to increase the extension of already existing universals.
In other words, even though Γ also maps many concepts to
one (super-) concept, it is not the same operation as classifi-
cation which maps many elements to one concept.

In the following we will attach a subscript “i” (as in “in-
stances”, aka “tokens”) to the “model-of” relationship, i.e.,
write S�iM, in order to signal that model M can be regarded
as a token model of system S. We will use a subscript “t” (as
in “types”), i.e., write S �t M, in order to signal that M can
be regarded as a type model of system S. Obviously �i and
�t are constrained in the following way: If a model M can be
regarded as a token model for a system S and the system has
an instance Si then M is a type model for Si , i.e.,

S �i M ∧ Si �t S → Si �t M.

Some interesting observations can be made considering Fig. 3
with S referring to “Java Classes” and Si referring to “Java
Runtime” (see top-right labels on boxes in Fig. 3). If

Si �t S ∧ S �i M, and

Msuper = Γ (M) then

– Si �t Msuper : the supermodel Msuper is a type model
for Si . This is expected, as Si can be viewed as a di-
rect instance of M and thus also as an indirect instance
of Msuper .

Matters of (Meta-) Modeling 7

⊲
t

⊲
t

RoadCity
1..∗2

FerryHarbor 1..∗2

ConnectionLocation 1..∗2

CityCity RoadRoad

Java Classes Token & Type Model Generalized Type Model

HarborHarbor FerryFerry
tokenModelOf

⊲i

Darm-
stadt

Java Runtime

Munich

typeModelOf

A9
typeModelOf

⊲
t

S

Si

M Msuper

Fig. 3. Model Reference Modes and Generalization

– ¬ (S �i Msuper): the supermodel Msuper is not a token
model of its submodel’s subject (S), assuming that all
elements in S should still be represented. Of course, if
we were prepared to ignore some elements, e.g., “Har-
bor” and “Ferry” then Msuper could be considered a to-
ken model of S. However, if we still want to represent all
elements then one element in Msuper would have to re-
present two elements in S, which is not possible using a
token model.

– ¬ (M �t Msuper): the supermodel Msuper is of course
not a type for M, as generalization is not classification.

– ¬ (M �i Msuper), the supermodel Msuper is not a to-
ken model of M, as its elements do not represent the
elements of M in a one-to-one fashion. Note, that it is
possible to reinterpret Msuper to be a reduced version of
M, thus completely ignoring the way Msuper was obtai-
ned. Under this assumption, i.e., that one does not intend
to capture all elements of M but only one representative
for each generalization in Msuper , it is indeed possible to
state M�iMsuper , bearing in mind that this is a complete
reinterpretation of Msuper ’s original role as the supermo-
del for M.

If one considers system representation (ρ(S, M)) and model
instantiation (M1 �t M2) as “basic notions in model engi-
neering” [5], then the above discussion makes it apparent that
model generalization is another basic notion whose interplay
with the first two notions needs to be defined. We have seen
that to do this it was crucial to distinguish between token and
type model roles.

Coming back to our original question of whether gene-
ralization might be admissible as an additional abstraction
function we can now answer the question for token and ty-
pe models respectively: For token models the answer is “no”,
i.e., α′ = id is mandatory. Allowing generalization would
make them type models of their subjects. As we have seen
above, generalization only makes sense for type models.

For type models the answer is a twofold “yes”: First, one
may just use generalization (α′ = Γ) with the prerequisi-
te that the subject must have a type model role, since if the
subject has a token model role only (consider model M from

Fig. 3 and delete “Java Runtime”) then the resulting super
model (here Msuper) does not represent a subject, neither as
a type- nor as a token model.

One might of course consider establishing a new subject-
model relationship, e.g, “abstract token model”. In fact the
resulting elements within the model would look like the ele-
ments in role-level collaborations of UML interaction dia-
grams. Yet, clearly such “abstract objects” or “roles” are neit-
her objects (they represent more than one element from the
subject) nor traditional types (they don’t classify elements
from the subject in an intensional manner as types/classes
do). The best interpretations the author can think of for such
entities are that they are

– placeholders for true objects, i.e., constrained (by attribu-
te values) variables. An application for such placeholders
are interaction diagrams used to represent program code.

– stereotypical objects, which result from using an alter-
native projection function π′ that is not constrained to
maintain a one-to-one mapping, but may project many
elements from the system onto the same element in the
model. An application for such stereotypical objects are
object diagrams which are not meant to be actual system
snapshots, but illustrations of how object roles perform
certain interactions in general.

The second “yes” with respect to using generalization in the
abstraction function for type models relates to the combinati-
on of generalization together with classification (α′ = Γ ◦Λ)
to obtain a generalized version of a type model. Note that the
same result can be achieved by a Λ′ that directly maps to the
generalized types. Conversely, we can state that any type mo-
del can be produced by first creating an isomorphic type mo-
del from the subject (through Λsingleton), where each element
is represented with a singleton type, and then generalizing the
resulting types (through an adequate Γ).

Now that we have established the different characteristics
of token and type model roles and also investigated their in-
terplay with three basic model relationships (representation,
instantiation, and generalization), we are in a position to ans-
wer the question when it is appropriate to characterize a mo-
del as a metamodel.

8 Thomas Kühne

O1O0

CollieLassie Breedontological
«instanceOf»

ontological
«instanceOf»

O2
typeModelOf

⊲t

typeModeOf

⊲t

Fig. 4. Ontological Metamodeling

4 What is a Metamodel?

A literal analysis of “metamodel” suggests to investigate what
the prefix “meta” signifies in other, similar contexts. Apparent-
ly the prefix “meta” is used whenever an operation is app-
lied twice. For instance, a discussion about how to conduct
a discussion is a “meta-discussion”, or learning general lear-
ning strategies while learning a particular subject is “meta-
learning”. As a final example consider mathematicians like
Hilbert who were concerned about a proper founding of ma-
thematics and worked on subjects like proof theory in the
19th century. In order to make sure that ordinary mathema-
tics could be performed reliably, they used mathematical me-
thods, which is why this new subject area was coined “meta-
mathematics”, as mathematical methods were applied to ma-
thematics itself.

In summary, the prefix “meta” is used before some opera-
tion f in order to denote that it was applied twice. Instead of
stating “f -f”, as in “class-class” one states “meta-f”, e.g.,
“meta-class”. For any further application of the operation,
another “meta” prefix is added to yield “meta-meta-class”,
etc.

Indeed, we can find many supporting statements defining
“metamodel” as implying that “modeling” has taken place
twice, e.g.,

“[A metamodel is] a model of models” [14].

Also—

“A model is an instance of a metamodel” [15].

—implies that a metamodel is a model of another model.
However, if we look at the right hand side model of Fig. 1,

showing a model of the model in the middle of Fig. 1 (we
might be talking about a map that uses a larger scale or just
provides less information than the original map), it does not
seem justified to label it a “metamodel”. After all, it enjoys
the same relationship to the original system as its subject
model, whereas real “metaness” involves some “detachment”
with respect to the original. For instance, “meta-discussions”
take one further away from the ordinary discussion and “meta-
learning” has no immediate effect on learning a particular
subject. Even though, regarding Fig. 1, we have S �2 M, i.e.,
we need two steps to get back to the original system, we have
to refrain from accepting M as a metamodel because we also
have the overarching link, i.e., S � M, identifying M as an
ordinary (non-meta-) model.

Indeed, when we characterize “metaness” as a two-level
detachment of the original—through the double application

of some operation f—we need to exclude transitive f ’s. Ge-
neralizing a superclass, for instance, yields another superclass
only, even though we might be tempted to first construct “su-
per-superclass” and then read that as “meta-superclass”. Due
to the transitivity of generalization, however, “super-super”
is just the same as “super”. Hence, any relation between two
entities, which is going to be used to build up a meta-entity
must not be transitive.

In order to define this formally, we use relation composi-
tion (R ◦ S) and compose a relation with itself:

e1R
ne2 =

{∃e : e1R
n−1e ∧ eR e2 , n > 1

e1R e2 , n = 1

Intuitively, e1R
ne2 means that there is a path of length n from

e1 to e2 within relation R. The standard “transitive” property
for relations may hence be expressed as e1R

2e2 → e1R e2.
We now demand a relation R suitable for building meta-

levels to be:
acyclic ∀ e1, e2, n : e1R

n e2 → ¬ e2R e1, and

anti-transitive ∀n ≥ 2 : Rn ∩ R = ∅.

Note that “acyclic” implies both “irreflexive” (¬∃ e : eR e)
and “asymmetric” (∀ e1, e2 : e1R e2 → ¬ e2R e1), but ex-
tends the exclusion of cycles above length two as well.

Considering “model instantiation” (e.g., �t) as a candi-
date for a meta-level constructing relation, we can confirm
that it should not map elements to themselves8, should not
claim that elements are mutual instances of each other (crea-
ting circular definitions), and finally should disallow transiti-
vity of any length. This is why our “anti-transitive” property
excludes transitivity not just for two levels, but for any chain-
length with n ≥ 2.

The above constraints guarantee a (meta-) level-construc-
ting relationship, however, relationships might be “loose” in
the sense that they may cross more than one level boundary.
If this is undesired, as it is for strict metamodeling [16], a fur-
ther property is required:

level respecting ∀n, m :
(∃ e1, e2 : e1R

ne2 ∧ e1R
me2) →

n = m

Using this novel, purposed designed property for relations,
we can make sure that all paths from one element e1 to ano-
ther element e2 have the same lengths. Note, that unique paths

8 Self-description is useful for self-terminating meta-hierarchy
tops, however. This rather special application, which makes sense
for linguistic hierarchies (see section 4.1) only, can be admitted as a
special case.

Matters of (Meta-) Modeling 9

are unproblematic anyway as they assign levels to their invol-
ved elements “by definition” without any possibility of incon-
sistencies. Multiple paths, however, may exist due to multiple
classification. Note that property “level-respecting” implies
property “anti-transitive”, which then might be discarded.

Going back to our initial question we can now firmly re-
ject any potential “metamodel status” of the right hand side
model of Fig. 1, since the relationship � between the models
is actually the “token-model-of” (�i) relationship, which is
transitive and therefore not suitable to constitute metamodels.
Hence, a token model of a token model is not a metamodel.

Fig. 4 shows a model (at the right hand side) which is truly
a metamodel.9 This time the relationship between the models
is “type-model-of” (�t) and therefore the litmus test, whether
the relationship is not transitive, succeeds. As a result, we can
confirm that the phrase “A metamodel is a model of a model”
is true, provided that the respective “model-of” relationship
is not transitive.

Note that in order to create a metamodel we need the sa-
me non-transitive relationship (e.g., “type-model-of”) twice.
Even given that in Fig. 3 “Java Classes” is a type model of
“Java Runtime” and “Token & Type Model” is a (token) mo-
del of “Java Classes”, this does not make the latter a meta-
model of “Java Runtime”, as we are missing another “type
model” relationship.

4.1 Flavors of Model and Element Instantiation

We have seen that we can construct a model M2 of another
model M1 so that M2 is not a model of M1’s subject S:
S �2

t M2 � S �t M2. An alternative way, to achieve such
anti-transitivity, potentially giving rise to metamodels, is not
to model the content of model M1, but the language that was
used to write model M1. The model on the right hand side
of Fig. 5 (at L1) specifies (the abstract syntax of) the lan-
guage used to create the token and type models, in this case a
tiny portion of the UML, which is why the respective “instan-
ceOf” relationships are labeled with �l

t (“l” for linguistic).
In order to be able to discuss (in section 4.2) which of the

models in Fig. 6 might be granted metamodel status and to
fully appreciate the discussion (in section 5) on whether or
not it is reasonable to associate models with language defi-
nitions, we need to make the difference between linguistic
(�l

t) and ontological (�o
t) instantiation [17] explicit. Note

that while it is possible to distinguish between the instantia-
tion relationship between models (called “sem” in [1]) and
the (inter-level) instantiation relationship between model ele-
ments (called “meta” in [1]) we will just use one overloaded
term for both cases.

What does it mean for a model (-element) to be an in-
stance of another model (-element)? Fig. 5 depicts that the
answer depends on whether one is talking about ontological
or linguistic instantiation.

9 We could have also extended Fig. 2 to include yet another type
model, e.g., containing elements “LocationType” & “ConnectorTy-
pe”, but Fig. 4 shows a nice natural name for a metatype (“Breed”).

Ontological instantiation can be defined as

e �o
t T � μ(e) ∈ ε(μ(T)), or alternatively (7)

e �o
t T � ι(μ(T))(μ(e)). (8)

See the left hand side of Fig. 5 for a corresponding visuali-
zation10, which uses real images for denoting the meaning of
models for illustrative purposes only.

For an object to be considered an ontological instance of
a type, we expect its referenced element to be in the extensi-
on of the concept referenced by the type (definition 7). The
intensional variant (definition 8) demands that the referenced
domain element satisfies the intension (a conjunction of pre-
dicates) of the referenced concept.

Ontological instantiation between two elements or mo-
dels is therefore based on the relationship between them in
terms of their meaning. For ontological domain models we
may set this meaning to be the corresponding elements in the
reduced system Sr, which in turn reference elements in the
original system S, i.e. μ(M) = π(S). This way we can distin-
guish between the original system that is represented (ρ) by
the model and—a possibly much less rich—meaning of the
model (μ) (see also Fig. 7).

Note that practical modeling languages, like UML, addi-
tionally define syntactic conformance rules between e and T
(see equation 7). This conformance is based on whether or
not e can be regarded as an instance of T syntactically. This
makes sense, as the real ontological test can not be performed
automatically.

Linguistic instantiation can be defined as

e �l
t T � e ∈ ε(μ(T)), or alternatively (9)

e �l
t T � ι(μ(T))(e). (10)

See the bottom part of Fig. 5 for a corresponding visualizati-
on. Linguistic instantiation between an element and a lingui-
stic type is based on the assumption that the type represents a
(fragment of a) language defining which expressions are valid
sentences of it. Therefore, in definition 10 we simply apply
the intension of the type—a predicate—to the element. Note
that the element appears as itself, instead of being an argu-
ment for μ, since linguistic instantiation concerns the form of
elements themselves, as opposed to their content (and mea-
ning respectively) as is the case with ontological instantiati-
on.

As can be seen in Fig. 5, language concepts, such as “Ob-
ject” and “Class” on the right hand side, do not reference any
subjects from the domain on the left hand side. This illustra-
tes that a linguistic model Ml is never a model of its subject
model’s subject:

S �i M ∧ M �l
t Ml → ¬ (S �t Ml) , whereas (11)

S �i M ∧ M �o
t Mt → S �o

t Mt (12)

10 For the sake of simplicity we are just considering two ontologi-
cal levels, whereas in principle there could be n.

10 Thomas Kühne

intension
ι

L1

O1

O0

Class

linguistic
«instanceOf»

Lassie Object

linguistic
«instanceOf»

type
instance

L0

μ

μ

Lassie ∈ ε(μ(Object))

μ(
La

ss
ie

)
∈

ε(
μ(

C
ol

lie
))

concept

ex
ten

sio
n ε

∈

has long hair
has bushy tail
can herd sheep
…

extension
ε

∈

intension
ι

has name
has slots
has links
…

languagelanguage

Lassie Fido

Tom

16:14

2001
clock

on
to

lo
gi

ca
l

«i
ns

ta
nc

eO
f»

⊲

o

Collie
μ

t

⊲
l
t⊲
l
t

⊲
l
t⊲
l
t

Fig. 5. Ontological versus Linguistic Instantiation

4.2 Is the UML Metamodel a Metamodel?

Fig. 6 shows one model (bottom-left) depicted by an object
diagram and one corresponding ontological type model de-
picted as a class diagram (top-left). For both, the correspon-
ding excerpts from the linguistic UML metamodel (here, un-
connected), are shown on the right hand side. Which of these
four models/model-fragments can be granted metamodel sta-
tus?

The top-left type model is not a metamodel with respect
to the subject S (not shown in Fig. 6) of the bottom-left mo-
del. According to the test we have developed at the begin-
ning of section 4, we require a sequence of two non-transitive
“model-of” relationships, but we only have a single “type
model-of” relationship, making the top-left model a simple
type model of S (see equation 12).

The interesting cases are the two models at the right hand
side of Fig. 6. The bottom-right model is not a result of ap-
plying the same non-transitiv “model-of” operation twice to
system S, but might still be called a metamodel on the basis
that it is a model of a model, without also being a model of the
bottom-left model’s subject S (see definition 11). Hence, even
though it does not maintain an R2 relationship to S, it never-
theless, engages in an overall anti-transitive relationship.

The reason why we are discussing this “unclean” case of
a metamodel is the OMG’s policy of referring to the bottom-
right model as a metamodel [15]. In fact, for old versions
of the four-layer architecture (where objects like “Frankfurt”
were located at the M0 level, classes like “City” at the M1

level and elements of the UML superstructure like “Class”
at the M2 level) this seemed plausible as the language level

on
to

lo
gi

ca
l

«i
ns

ta
nc

eO
f»

Frankfurt

Munich

Nürnberg

Darmstadt

A5

A3

A9

RoadCity 1..∗2

Class

Association

linguistic
«instanceOf»

⊲
o

⊲
l

Object

Link

linguistic
«instanceOf»

⊲
l

t

t

t

Fig. 6. Linguistic Metamodels

M2 could be thought of maintaining a two-level “type-model-
of” relationship (�2

t) with user objects at level M0. Yet, with
the change (correction) of the interpretation of M0 as not be-
longing to the model stack [1], user model objects moved to
M1 and now are only in one-level type-model-of relationship
with the UML language definition at M2 (�t). One might
think that there is still a two-level “type-model-of” chain to
the real user individuals at M0, but this is not the case as the
relationship between M1 and M0 concerning individuals is
not “type-of” but “represents” (ρ). Consequently, there is no
clean case of a two-level type-model chain.

What about the top-right model of Fig. 6? Superficially
it appears to feature a two-level type-model chain, as there

Matters of (Meta-) Modeling 11

notation name description

α abstraction
creates a model from a system using projection (π) and possibly classification (Λ) and generalization
(Γ), hence �� α(�).

Λ classification creates a type model, hence��t Λ(�)

Γ generalization creates a supermodel, hence ��t �→ ��t Γ (�)

π projection
a homomorphic mapping creating a reduced system from a given system, using selection and reduction
of information.

ρ represents records the intention of a model to represent a system.

μ meaning assigns meaning to a model (element). If ρ(�,�) then one may define μ(�) = π(�).

� model-of holds between a system and a model describing the former.

�i
token

model-of
holds between a system and a model representing the former in a one-to-one fashion. Model elements
may be regarded as designators for system elements.

�t
type

model-of
holds between a system and a model classifying the former in a many-to-one fashion. Model elements
are regarded as classifiers for system elements.

�
o ontological

model-of

indicates that the model controls the content of its elements, hence � �o
t � � μ(�) ∈ ε(μ(�)) and

��
o
i �� μ(�) = π(μ(�)). Assuming μ(�) = �, for systems which do not model anything, we have

��
o
i �� μ(�) = π(�) and thus ρ(�,�) → ��

o
i � (see definition of μ above).

�
l linguistic

model-of
indicates that the model controls the form of its elements. This automatically implies �l

t and, hence
��

l
t �� � ∈ ε(μ(�))

Table 2. Notation Overview

π

MtokenM

Mtype

Sr-type

ρ ⊲ i
o

μ μ

Sr-token

α = τ π° ⊲
to

μ

⊲
t
l

⊲
t
l

ML

μ

L

m
em

be
r o

f t
he

ex
te

ns
io

n
of

m
em

be
r

of
 th

e
ex

te
ns

io
n

of

πSr

S

Fig. 7. Relations and Functions

are two �t relationships from the bottom-left to the top-right
model. However, the two � relationships are not of the sa-
me kind. Ontological instantiation (�o

t) relates two models
whose subjects are in the same domain but on different logi-
cal levels. Linguistic instantiation (�l

t) relates a model with
the definition of the language of which it is an expression.
Ergo, the top-right model is on the same linguistic level as
the bottom right model, because the intermediate ontological
instantiation does not count with respect to linguistic metale-
vels.

Therefore, strictly speaking, neither of the two right hand
side models of Fig. 6 are pure metamodels in the sense of re-

peating the same non-transitive operation twice. If one wants
to stick to the term “metamodel” for level M2 (and the right
hand side models of Fig. 6 respectively) one has to do so on
the basis that linguistic models are models of models without
violating anti-transitivity.

Fig. 7 and Tab. 2 summarize the concepts and notation
introduced so far.11 We will make use of these in the next
section in order to finally explore whether the use of “model”
is adequate in the case of linguistic models, and if so, why.

5 Metamodel = Language Definition?

The first task in answering this question is to make the que-
stion more precise: With respect to ontological metamodels
(e.g., the rightmost model of Fig. 4) we can observe that their
primary purpose is not to define a language. Albeit this is not
how most users think about their domain models, one may
still regard them as defining a vocabulary plus constraints to
be used in the next lower ontological level, just as a class
diagram can be regarded to define a vocabulary plus cons-
traints, i.e., a language, for all object diagrams conforming
to it. This is not surprising as the definitions for ontological
and linguistic instantiation (definitions 8 and 10 respectively)
only differ in the “detour” via the domain subjects in the on-
tological case. However, for all intents and purposes one can
still answer the question whether ontological metamodels are

11 Fig. 7 does not use the UML notation but indicates relations
with lines featuring arrow heads on both sides and functions with
lines featuring one arrow head only; the two dashed lines being ex-
ceptions to this rule.

12 Thomas Kühne

language definitions with “no”, unless we interpret an onto-
logical metamodel as a domain specific language definition,
thus turning it into a linguistic metamodel.

So let us concentrate on the question what the relation-
ship between linguistic metamodels and languages is. A few
quotes indicate that there is at least a perceived, close relati-
onship:

“[A metamodel is a] model that defines the language
for expressing a model [15].”

“A metamodel is a model of a language of models [2].”

“A metamodel is a specification model for which the
systems under study being specified are models in a
certain modeling language [10].”

Reconstructing these statements in our framework yields: A
metamodel MM is the model of a model M, i.e., M �l

t MM,
if M ∈ ε(μ(MM)) or equivalently, making the language in-
volved explicit: M ∈ ε(L) ∧ L = μ(MM) (see Fig. 8 for
one language and Fig. 9 for a language stack). We use a lan-
guage concept L and refer to the language specification with
ι(L), and to the set of all sentences of L with ε(L).

lin
gu

is
tic

«i
ns

ta
nc

eO
f»

Model

Metamodel Language

Language
Sentences

μ

⊲
l

∈
elementOf

defines

Language
Specification

intension

ι
extension

εt

Fig. 8. Metamodels as Language Definitions

As a result, a model is an instance of a metamodel if it is
an element of the set of all sentences which can be generated
with the language associated with the metamodel (also see
definition 9). Note that in formal treatments the term “lan-
guage” is often associated with the said set of all language
sentences (labeled “Language Sentences” in Fig. 8). In prac-
tice, this language extension is almost always defined by an
intensional definition, i.e., rules characterizing whether or not
an expression is a sentence of the language. Hence, we also
could have interpreted the metamodel to be directly one of
many equivalent language specifications, i.e., MM ∼ ι(L).
Our choice presented above, however, has the advantage of
being more symmetric in comparison to ontological instan-
tiation.

Let us refocus on the initial question of whether the term
“model” is appropriate for a language specification, such as
the M2 layer of the OMG’s four-layer architecture. Surely we
should not use the term “model” simply because the specifi-
cation was expressed using a modeling language. For a true

model we would still expect some reduction feature, which is
in conflict with the expectation that a language specification
should be precise and complete.

System

expressed using

LanguageMetamodel

models

defines
expressed using

Meta-
Language

Meta-
Metamodel

defines

lin
gu

is
tic

«i
ns

ta
nc

eO
f»

lin
gu

is
tic

«i
ns

ta
nc

eO
f»

∈ ε(.)

μ

∈ ε(.)

μ

⊲
l

⊲
l

μ

t
t

Model

Fig. 9. Language Definition Stack

One might argue that just the abstract syntax of the lan-
guage is defined by a metamodel and other aspects belonging
to a complete language specification, such as concrete syntax
and semantics are left out. But would we want to stop using
the term “metamodel” if these aspects were somehow inclu-
ded in the future?

Fortunately, we do not need to engage in a discussion
about the existence of a reduction feature with respect to the
language specification. To justify the model nature of a lan-
guage specification, expressed through a so-called metamo-
del, it is sufficient to recognize that it universally captures all
models that may be expressed with it, i.e, are instances of it.
Hence, it is its capacity as a type model for all the models ex-
pressible with it—as opposed to its capacity as a token model
for the language specification—that qualifies it as a model. A
language metamodel therefore does not deserve its name for
what it means (a language), but for what it classifies (lingui-
stic instances of it).

6 Related Work

Bézivin [5] and Favre [2] recommend “conformantTo” and
“ConformsTo” over “instanceOf” in the context of relating
models to each other in order to distinguish the conformance
relationship between models from the instantiation relation-
ship known from object-orientation (i.e., between objects and
classes). For better or for worse, however, “instanceOf” is al-
ready a widely used term [15] for relating models to each
other, and it appears justifiable to overload the term in this
way, given the analogy between the type-model/token-model
and class/object pairs respectively.

Be that as it may, in the context of a description hierarchy
such as the OMG four-layer architecture, there are good rea-
sons to have different names for inter-level and intra-level re-

Matters of (Meta-) Modeling 13

intra-level inter-level

[1] instOf meta

[5] instanceOf conformantTo

[15] snapshot instanceOf

[17]
ontological
instanceOf

linguistic
instanceOf

Table 3. Instantiation Terminology for the OMG Stack

lationships between elements. Any combination making the
difference explicit seems to be acceptable (see Tab. 3 for a
comparison of terminology and section 4.1 for a correspon-
ding discussion).

Strahringer also takes a systematic look at how descrip-
tion hierarchies are constructed and coins the term “metaiza-
tion principle12” for the operation that is repeatedly applied
from level to level [18]. She also points out that counting me-
ta levels, e.g., in order to ascertain whether a metamodeling
level has been reached, has to be done with respect to one
“metaization principle” only, in case several are employed in
a description chain. She does not, however, formally define
the requirements for a metaization principle which allows the
construction of a meta-hierarchy.

Strahringer’s analysis of the relationship between models
and languages [18] is similar to ours (see Fig. 9), however,
using a different distribution of elements to levels and a dif-
ferent terminology.

Seidewitz distinguishes two kinds of meaning for mo-
dels [10]: He describes an interpretation (“meaning in the
first sense”) of a model

“. . . as a mapping of elements of the model to ele-
ments of the SUS13. . . [i.e., for instance, this] class
model means that the Java program must contain the-
se classes.”

He describes the theory of a modeling language (“meaning in
the second sense”) as

“the relationship of a given model to other models de-
rivable from it. . . . [i.e., for instance, this] class model
means that instances of these classes are related in this
way.”

Seidewitz’s two kinds of meaning may hence be explained in
our terminology by considering whether the model in questi-
on is an ontological model or a linguistic model. The “mea-
ning” of an ontological model (interpretation) relates (hori-
zontally) to the domain of interest (through μ and ρ). The
“meaning” of a linguistic model (theory of a modeling lan-
guage) relates (vertically) to the next metalevel below, enab-
ling other models to be checked against the linguistic model
for conformance (through the “∈ ε(μ(MM))” check).

Seidewitz’s recognition of both interpretation and theory
of a modeling language as being relevant for models in gene-
ral is also matched by our observation that a model with an

12 In German: “Metaisierungsprinzip”.
13 System under study.

ontological intention can always also be used with a lingui-
stic interpretation in order to provide a syntactic conformance
check for subjects of which it is a type model.

Favre also defines a function μ relating a model to the
system it represents [2]. Since “represents”, in the sense of
“could be regarded as a model for” is not a many-to-one, i.e.,
functional, relation, the author assumes that Favre also means
μ(M) to refer to a single associated meaning of M.

Furthermore, Favre defines a “meta-step” pattern, which
is similar to the characterization of linguistic instantiation
presented here. According to Favre, a model M conforms to
a metamodel MM, if it is an element of the language repre-
sented by the metamodel, i.e., (using our notation)

M �l
t MM � M ∈ ε(L) ∧ ε(L) = μ(MM)14.

Favre, thus interprets the metamodel to directly represent all
language sentences ε(L). In contrast, the approach presented
here

M �l
t MM � M ∈ ε(L) ∧ L = μ(MM),

assumes linguistic models to represent language concepts which
in turn have an extension (set of all language sentences) and
an intension (a language specification).

7 Conclusion

In order to establish a commonly agreed terminology it is es-
sential for the model driven engineering community to define
under which circumstances the notions “model” and “meta-
model” and its associated basic relationships are applicable.
This article argued for maintaining the required features al-
ready known for technical models and refrain from overly
extending the notion of “model”, e.g., to include “copies”.

We used an approach where the subjects of modeling are
already available in a finite representation. We have inten-
tionally ignored the process of capturing systems from the
real world into a representation, as this necessarily implies
a number of abstraction operations which then are no longer
optional. The approach used in this article made it possible
to discuss abstraction functions with varying reduction de-
grees (including the extreme case of no reduction at all, i.e.,
exact copying), something simply impossible when dealing
with real world subjects.

In order to be able to judge under which circumstances a
model might be granted “metamodel” status, it was extremely
helpful to distinguish between token model and type model
roles. Without such a means of discrimination, a discussion
about statements like “A metamodel is a model of a model”
cannot be settled systematically.

We have introduced a systematic definition, based on acy-
clic and (the novel notion of) level-respecting relations, to
decide under which circumstances a model maybe granted

14 In this context, another useful condition made by Favre,
μ(�) = �, is not important.

14 Thomas Kühne

“metamodel” status. It became apparent that the OMG’s po-
licy of referring to the UML language definition as the “UML
metamodel” no longer has a straightforward justification with
respect to the latest version of the four-layer architecture, but
can be justified to allow a consistent interpretation based on
anti-transitivity of model relationships.

We used the terms “role” and “reference mode” to empha-
size the fact that whether a model is a token or a type model
depends on its relationship to its subject. This is an important
observation as we have seen examples of models being both
a token and a type model at the same time (with respect to
different subjects).

The reference mode “token model” clearly demonstrates
that the “represents” relationship from a model to a system
does correspond to “instanceOf” from object-technology. It
turns out to be wrong to interpret systems to be instances of
their token models. While the reduction feature of token mo-
dels may sometimes create the impression that classification
occurred, really only representation takes place.

We have, furthermore, shown that “generalization” is al-
so a basic relationship between models in addition to “instan-
tiation” and “representation”. Again, the distinction between
token and type models significantly simplified the analysis of
the interplay of the generalization relationship with the other
basic relationships.

Finally, we argued that language definitions may rightful-
ly be referred to as (meta-)models regarding their type model
capacity as opposed to their token model capacity.

The author believes that the recognition of token and ty-
pe model roles and an explicit treatment of all basic notions
in modeling, including “generalization”, may drastically sim-
plify disputes about fundamental issues, such as the “meta-
model” definition, and will provide a useful basis to build on.

Acknowledgements The author would like to thank the participants
of the Dagstuhl seminar 04101 on “Model-Driven Language Engi-
neering” for many stimulating discussion. In particular (in alphabe-
tical order) Pieter van Gorp, Martin Grosse-Rhode, Reiko Heckel,
and Tom Mens further contributed by sending emails to the author
with their views on what modeling is about. Numerous discussion
with Colin Atkinson helped in the recognition and characterization
of the token and type model roles. Finally, I’m grateful for many
comments contributed by Wolfgang Hesse and the commitment of
the anonymous reviewers which led to a number of significant im-
provements.

References

1. Jean Bézivin and Olivier Gerbé. Towards a precise definiti-
on of the OMG/MDA framework. In Proceedings of the 16th

International Conference on Automated Software Engineering
Coronado Island, pages 273–280, November 2001.

2. Jean-Marie Favre. Towards a basic theory to model driven en-
gineering. In Third Workshop in Software Model Engineering
(WiSME@UML), October 2004.

3. Chen-Chung Chang. Model Theory. North-Holland, Amster-
dam, 2 edition, 1977.

4. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mode-
ling Language Reference Manual. Addison-Wesley, Reading,
Mass., 1999.

5. Jean Bézivin. In search of a basic principle for model driven
engineering. Special Novática Issue “UML and Model Engi-
neering”, V(2), April 2004.

6. Roland Kaschek. A little theory of abstraction. In Bernhard
Rumpe and Wolfgang Hesse, editors, Modellierung 2004, Pro-
ceedings zur Tagung, 23.-26. März 2004, Marburg, volume 45
of LNI, pages 75–92. GI, 2004.

7. Herbert Stachowiak. Allgemeine Modelltheorie. Springer-
Verlag, Wien and New York, 1973.

8. Richard S. Bird. An Introduction to the Theory of Lists. Tech-
nical Report PRG-56, Oxford University, October 1986.

9. W. Steinmüller. Informationstechnologie und Gesellschaft:
Einführung in die Angewandte Informatik. Wissenschaftliche
Buchgesellschaft, Darmstadt, 1993.

10. Ed Seidewitz. What models mean. IEEE Software, 20(5):26–
32, September 2003.

11. Michael Harkavy and et al., editors. Webster’s new encyclo-
pedic dictionary. Black Dog & Leventhal publishers Inc., 151
West 19th Street, New York 10011, 1994.

12. Rudolf Carnap. Meaning and Necessity: A Study in Semantics
and Modal Logic. University of Chicago Press, 1947.

13. Jochen Ludewig. Models in software engineering—an intro-
duction. Journal on Software and Systems Modeling, 2(1):5–14,
March 2003.

14. OMG. MDA Guide Version 1.0.1, 2003. Version 1.0.1, OMG
document omg/03-06-01.

15. OMG. Unified Modeling Language Infrastructure Specificat-
ion, Version 2.0, 2004. Version 2.0, OMG document ptc/03-09-
15.

16. Colin Atkinson and Thomas Kühne. Profiles in a strict meta-
modeling framework. Journal of the Science of Computer Pro-
gramming, 44(1):5–22, July 2002.

17. Colin Atkinson and Thomas Kühne. Model-driven develop-
ment: A metamodeling foundation. IEEE Software, 20(5):36–
41, September 2003.

18. Susanne Strahringer. Metamodellierung als Instrument des Me-
thodenvergleichs. Shaker Verlag, Aachen, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

