
Assignment 1

Production System Modelling in metaDepth

Randy Paredis

randy.paredis@uantwerpen.be

1 Practical Information

This assignment will make you familiar with the textual modelling tool metaDepth.
You will learn to model two distinct domain-specific modelling languages (for-
malisms) that will be used for creating a simple factory.

The different parts of this assignment:

1. Implement the abstract syntax for your languages in metaDepth.

2. Enrich the abstract syntax with constraints (using EOL) so that you can
check that every model is well-formed.

3. Create some production system models that are representative for all the
features in your language. The requirements for two valid models are
specified below, and there should be a third invalid model to show that
your constraints detect invalid models.

4. Write operational semantics (using EOL) that simulate the production
system.

5. Write a report that includes a clear explanation of your complete solution
and the modelling choices you made. Also mention possible difficulties
you encountered during the assignment, and how you solved them. Don’t
forget to mention all team members and their student IDs!

This assignment should be completed in groups of two if possible, otherwise
individually is permissible.

Submit your assignment as a zip file (report in pdf + commented abstract
syntax and operational syntax models) on Blackboard before 19 October 2021,
23:59h1. If you work in a group, only one person needs to submit the zip file,
while all others only submit the report. Contact Randy Paredis if you experience
any issues.

1Beware that BlackBoard’s clock may differ slightly from yours.

1



2 Requirements

This section lists the requirements of the production system domain-specific lan-
guages. The language requirements are split into two sections: one on abstract
syntax, and one on operational semantics. Make sure to test each requirement
with test models!

2.1 Abstract Syntax

The abstract syntax of the DSL captures its syntax and static semantics. The
requirements for the abstract syntax are:

1. A production system consists of the infrastructure with conveyor belts
running between machines. Workers operate the machines while items
are transferred on the belts. Items are processed (i.e., assembled) and are
either assigned by a quality check to be accepted, rejected, or fixed.

2. The belt network consists of a number of interconnected belt segments.
The language must support the following segments:

� Straight - A trivial belt segment which allows an item to move
straight. Has one incoming and one outgoing segment.

� Split - Identifies a bifurcation in the belt. 50% of the items will move
to the first output segment and 50% will move to the second output
segment. Hence, it has one incoming segment and two outgoing seg-
ments.

� Join - Joins two segments. Has two incoming segments and one
outgoing segment. The items will be outputted in order of arrival.

� Machine - Similar to Straights, but potentially alter the given items.
It is always connected to at least one segment.

– Each Machine has a unique name, consisting of a single upper
case letter, followed by zero or more lower case letters, ending
with zero or more numbers.

3. Although this will not be allowed at run-time, the language should support
more than one item to be present on a belt segment at a time. The Join
segment is an exception for this rule, as it is allowed to have 2 items at
the same time.

4. There are two types of (basic) Items in this production system: Spheres
and Cubes. An Item must be on only exactly one segment.

5. There are a number of Machines which exist in this production system

� Arrival - The Arrival Machine produces either Spheres or Cubes.
Items are produced when the Machine is operated.

2



� Assembly - The Assembly Machine combines one Cube and one
Sphere into one AssembledItem (which is itself an Item). Hence,
it has two inputs and one output. The first input accepts Cubes,
whereas the second input accepts Spheres.

– It should be physically impossible to have a connection from an
Arrival of a Cube to the Assembly ’s Sphere input. Similarly, it
should be impossible for Spheres to arrive at the Assembly ’s Cube
input. You may assume there are only conveyor belts between
the Arrivals and the Assembly.

� Inspection - The Inspection Machine inspects the Item (including
AssembledItem), and determines if an item must be accepted, fixed
or destroyed.

– An Inspection Machine is still a type of Segment, but it must
also have one output belt for the Items to fix, and one output
belt for the Items to destroy.

� Loading Bay - The LoadingBay Machine takes any incoming Items
off the belt and stores them for future shipment.

� Fixer - The Fixer Machine attempts to repair any defects in the
Item. For simplicity, you can ignore any internal workings for this
machine.

� Incinerator - The Incinerator destroys the Item on the belt.

6. Each of these Machines requires an Operator to operate. Operators have
a name2, which should be unique. Each Machine can have at most one
Operator be present, and the Operator must be present for the Machine
to function.

7. These Operators also need a schedule, which will be defined in a second
domain-specific language. This is so that each operator can have a differ-
ent schedule in the production system. The requirements for this second
language are:

� A schedule is associated to an Operator by referring to the name of
the Operator. Each Operator must have a schedule, and a schedule
must have an Operator.

� Whenever the operator moves between two different machines (in-
cluding when the schedule is repeated), there must be a step (of
duration one) which represents the movement of the worker within
the physical space. During this movement step, that operator will
not operate any Machine.

� The schedule of an Operator tells them which Machines to operate,
and for how many time steps. The Operator will start at the first

2And hopes, dreams, fears, and rich social lives. But these qualities won’t be modelled
here, only their name.

3



Machine in the list (which can optionally be null, if the Operator
starts in a movement step), and operate them in order until the end
of the list in which case the schedule will repeat. There must be at
least one step where a machine is operated in each schedule.

Sphere Arrival

Cube Arrival

Assembler Inspection Incinerator

Straight Loading Bay

Fixer

Straight

Straight

Straight

Straight

Join

Figure 1: An example production system.

2.2 Operational Semantics

In this part of the assignment, the semantics of the production system will be
modelled, including the Operators, Items, and Machines. The goal is for the
Operators to move between Machines and operate them, such that Items are
assembled, inspected, fixed, received, or destroyed.

The specific requirements are:

� The simulation is broken up into a number of discrete steps. In each
step, the Machines are operated if Items and Operators are present, the
Operators are moved if needed, and then the Items are moved (if possible).

� In the initial step, all Operators are placed at their start Machine. If an
Operator is scheduled to move to an occupied Machine, they must wait
until the other Operator is finished.

� An Item is allowed to move to the next segment if no Item is present on
that Segment, and the Item is not in an Assembler waiting for the other
shape to arrive. The Join is excempted for this rule, as it will allow at
most two Items to be located on the segment.

� An Arrival cannot produce a new Item if an Item is already on that
Segment.

� When the Assembler operates, both Items are removed, and replaced with
an AssembledItem.

4



� At a Split, 50% of the Items will move to the first output and 50% to the
second one. This can easily be ensured by having the Split consecutively
toggle between both outputs. For instance, the first item will be outputted
to the left, the second one to the right, the third one to the left again,
etc...

� At a Join, the Items are ordered in a first-in-first-out order.

� At an Inspector, the correctness of an Item is determined as an integer
in the range of [0, 100]. This value determines how the Item will be han-
dled/outputted. The chance of the Item being accepted (placed on the
accepted belt) is 70%. The chance of requiring fixing is 20%. The chance
of the Item requiring destruction is 10%.

� The simulation must produce a textual, human-readable trace (as in Fig-
ure 2). You are free to have more or less information than given, as long
as all required information for each step is outputted.

– Clearly describe your trace file structures in your report!

� The simulation continues until some number of AssembledItems are ac-
cepted. Set this parameter such that the traces are long enough to show
interesting behaviour.

� Think carefully about what information should be stored in the abstract
syntax of the model, and which information is relevant to the simulator.
You are free to choose how much information is stored in your model, as
long as all information is useful in some way.

3 Report

There are a number of requirements for the report. Above all, the marker must
be able to read the report and have a clear understanding of all aspects of the
assignment, without having to investigate the model files. I.e., your model files
will only be used as a support for your report, not the other way around!

Specifically, the report must contain:

� A brief outline of how the abstract syntax, operational syntax, and schedul-
ing models meet the requirements of the assignment, including all decisions
and assumptions made.

� A brief description of the constraints present in your languages.

� Three example production systems.

– Two valid, one invalid (doesn’t meet the constraints).

� For each production system, show:

5



===== Start Production System =====

Operator: ’Bob’ arrives at machine: Cubearr

Operator: ’Alice’ starts walking.

Operator: ’Ernie’ arrives at machine: Inspection

Operator: ’Daniel’ arrives at machine: Receiver

===== STEP 0 =====

Machine: ’Cubearr’ produces a Cube

Operator: ’Daniel’ still working for 1 more time steps at machine: Receiver

Operator: ’Bob’ starts walking.

Operator: ’Alice’ arrives at machine: Asm

Operator: ’Ernie’ still working for 1 more time steps at machine: Inspection

Item: ’MD_ea58cb3930414346b17eb8531c17481d’ at: cube_arr

===== STEP 1 =====

Operator: ’Daniel’ starts walking.

Operator: ’Bob’ arrives at machine: Sphrarr

Operator: ’Alice’ still working for 3 more time steps at machine: Asm

Operator: ’Ernie’ starts walking.

Item: ’MD_ea58cb3930414346b17eb8531c17481d’ at: s1

===== STEP 2 =====

Machine: ’Sphrarr’ produces a Sphere

Operator: ’Daniel’ arrives at machine: Incinerator

Operator: ’Bob’ starts walking.

Operator: ’Alice’ still working for 2 more time steps at machine: Asm

Operator: ’Ernie’ arrives at machine: Inspection

Item: ’MD_ea58cb3930414346b17eb8531c17481d’ at: assemb

Item: ’MD_ce324ac4bb714294a3897070c3ec231d’ at: sphere_arr

===== STEP 3 =====

Operator: ’Daniel’ still working for 1 more time steps at machine: Incinerator

Operator: ’Bob’ arrives at machine: Cubearr

Operator: ’Alice’ still working for 1 more time steps at machine: Asm

Operator: ’Ernie’ still working for 1 more time steps at machine: Inspection

Item: ’MD_ea58cb3930414346b17eb8531c17481d’ at: assemb

Item: ’MD_ce324ac4bb714294a3897070c3ec231d’ at: s2

...

Figure 2: An example human-readable trace produced by my solution for the
production system in Figure 1. Feel free to have more or less information than
this.

6



– A small, graphical diagram (doesn’t need to be elaborate, but enough
to understand the trace). This can be as simple or as fancy as you
want. PlantUML (https://plantuml.com/), GraphViz (https://
graphviz.org/) and DrawIO (https://draw.io/) are excellent tools
to create such a diagram.

– The results of constraint checking on the invalid production system,
which constraint(s) fail(s) and why.

– Interesting parts of the textual trace from the simulation, plus any
extra explanation required to clearly understand the traces.

4 Useful Links and Tips

� metaDepth main page: http://metadepth.org/

– http://metadepth.org/papers/TOOLS.pdf

– http://metadepth.org/Documentation.html

– http://metadepth.org/Examples.html

� Epsilion Object Language: https://www.eclipse.org/epsilon/doc/eol/

� A package for the Atom text editor (https://atom.io/), that allows a
very basic syntax highlighting for both EOL and metaDepth is available:
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/

metadepth.zip

Any updates and bugfixes made to this package are allowed, and free to
be mentioned in your submission/report or via email.

� Use an .mdc file to save time

– See slide 47 of https://metadepth.org/tutorial/tutorial.pdf

� Can create two separate models, then import one into the other

– See slide 94 of https://metadepth.org/tutorial/tutorial.pdf

� While you can do a lot with metaDepth, its documentation is limited in
the available features. The TOOLS paper and the tutorial provide some
insights, but a lot are hidden in the source code. Below is a short summary
of some possibly useful features:

– Nodes can be marked abstract to prevent users from instantiating
them.

– Attributes can be marked as an identifier (using {id}) to ensure
global uniqueness. This is similar to a database’s ID. An example:
name: String{id};

– Collection attributes can be marked unique to prevent duplicate
items and ordered to keep the order of the elements.

7

https://plantuml.com/
https://graphviz.org/
https://graphviz.org/
https://draw.io/
http://metadepth.org/
http://metadepth.org/papers/TOOLS.pdf
http://metadepth.org/Documentation.html
http://metadepth.org/Examples.html
https://www.eclipse.org/epsilon/doc/eol/
https://atom.io/
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/metadepth.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/metadepth.zip
https://metadepth.org/tutorial/tutorial.pdf
https://metadepth.org/tutorial/tutorial.pdf


items: Item[*] {unique, ordered};

– Builtin attribute types are: int, double, boolean, String and Date.
Any collection of these attributes is also possible, as well as custom
types.

– Enumerations can be created using:

enum MyEnum {VALUE1, VALUE2, VALUE3};

They must be in the Model-scope and can be compared in EOL as
simple strings on their values.

� If assignments are failing with Internal error: the value X is not

a Y, first assign the variable to null before performing the assignment.
This is due to type checking.

� Use if (x.isDefined()) to check for null.

� Use context "model name" to change which model the EOL is executed
in.

Acknowledgements

Based on an earlier assignment by Bentley Oakes.

8


	Practical Information
	Requirements
	Abstract Syntax
	Operational Semantics

	Report
	Useful Links and Tips

