
Assignment 2

Modelling in AToMPM

Randy Paredis

randy.paredis@uantwerpen.be

1 Practical Information

This assignment will make you familiar with the visual modelling tool AToMPM.
You will learn to create meta-models and abstract and concrete syntaxes for a
domain-specific modelling language (formalism) concerning production systems
(factories).

The different parts of this assignment:

1. Implement the abstract syntax of your language in AToMPM.

� The formalism used will be
/Formalisms/LanguageSyntax/SimpleClassDiagram

� You can also quickly create new formalisms with the create new for-
malism button.

2. Enrich the abstract syntax with constraints so that you can check that
every model is well-formed.

3. Create a concrete syntax, and generate a modelling environment by com-
piling the metamodel and the concrete syntax model. Do this incremen-
tally.

� The formalism for this part will be
/Formalisms/LanguageSyntax/ConcreteSyntax

4. Create some production system models that are representative for all the
features in your language. The requirements for two valid models are
specified below, and there should be a third invalid model to show that
your constraints detect invalid models.

5. Write a report that includes a clear explanation of your complete solution
and the modelling choices you made. Also mention possible difficulties
you encountered during the assignment, and how you solved them. Don’t
forget to mention all team members and their student IDs!

1



This assignment should be completed in groups of two if possible, otherwise
individually is permissible.

Submit your assignment as a zip file (report in pdf + abstract and concrete
syntax models) on Blackboard before 9 November 2021, 23:59h1. If you
work in a group, only one person needs to submit the zip file, while all others
only submit the report. Contact Randy Paredis if you experience any issues.

2 Requirements

This section lists the requirements of the production system domain-specific
language. The language requirements are split into two sections: one on abstract
syntax, and one on concrete syntax. Make sure to test each requirement with
test models!

2.1 Abstract Syntax

There are no modifications in this section from Assignment 1.
The abstract syntax of the DSL captures its syntax and static semantics.

The requirements for the abstract syntax are:

1. A production system consists of the infrastructure with conveyor belts
running between machines. Workers operate the machines while items
are transferred on the belts. Items are processed (i.e., assembled) and are
either assigned by a quality check to be accepted, rejected, or fixed.

2. The belt network consists of a number of interconnected belt segments.
The language must support the following segments:

� Straight - A trivial belt segment which allows an item to move
straight. Has one incoming and one outgoing segment.

� Split - Identifies a bifurcation in the belt. 50% of the items will move
to the first output segment and 50% will move to the second output
segment. Hence, it has one incoming segment and two outgoing seg-
ments.

� Join - Joins two segments. Has two incoming segments and one
outgoing segment. The items will be outputted in order of arrival.

� Machine - Similar to Straights, but potentially alter the given items.
It is always connected to at least one segment.

– Each Machine has a unique name, consisting of a single upper
case letter, followed by zero or more lower case letters, ending
with zero or more numbers.

1Beware that BlackBoard’s clock may differ slightly from yours.

2



3. Although this will not be allowed at run-time, the language should support
more than one item to be present on a belt segment at a time. The Join
segment is an exception for this rule, as it is allowed to have 2 items at
the same time.

4. There are two types of (basic) Items in this production system: Spheres
and Cubes. An Item must be on only exactly one segment.

5. There are a number of Machines which exist in this production system

� Arrival - The Arrival Machine produces either Spheres or Cubes.
Items are produced when the Machine is operated.

� Assembly - The Assembly Machine combines one Cube and one
Sphere into one AssembledItem (which is itself an Item). Hence,
it has two inputs and one output. The first input accepts Cubes,
whereas the second input accepts Spheres.

– It should be physically impossible to have a connection from an
Arrival of a Cube to the Assembly ’s Sphere input. Similarly, it
should be impossible for Spheres to arrive at the Assembly ’s Cube
input. You may assume there are only conveyor belts between
the Arrivals and the Assembly.

� Inspection - The Inspection Machine inspects the Item (including
AssembledItem), and determines if an item must be accepted, fixed
or destroyed.

– An Inspection Machine is still a type of Segment, but it must
also have one output belt for the Items to fix, and one output
belt for the Items to destroy.

� Loading Bay - The LoadingBay Machine takes any incoming Items
off the belt and stores them for future shipment.

� Fixer - The Fixer Machine attempts to repair any defects in the
Item. For simplicity, you can ignore any internal workings for this
machine.

� Incinerator - The Incinerator destroys the Item on the belt.

6. Each of these Machines requires an Operator to operate. Operators have
a name2, which should be unique. Each Machine can have at most one
Operator be present, and the Operator must be present for the Machine
to function.

7. These Operators also need a schedule, which will be defined in a second
domain-specific language. This is so that each operator can have a differ-
ent schedule in the production system. The requirements for this second
language are:

2And hopes, dreams, fears, and rich social lives. But these qualities won’t be modelled
here, only their name.

3



� A schedule is associated to an Operator by referring to the name of
the Operator. Each Operator must have a schedule, and a schedule
must have an Operator.

� Whenever the operator moves between two different machines (in-
cluding when the schedule is repeated), there must be a step (of
duration one) which represents the movement of the worker within
the physical space. During this movement step, that operator will
not operate any Machine.

� The schedule of an Operator tells them which Machines to operate,
and for how many time steps. The Operator will start at the first
Machine in the list (which can optionally be null, if the Operator
starts in a movement step), and operate them in order until the end
of the list in which case the schedule will repeat. There must be at
least one step where a machine is operated in each schedule.

2.2 Concrete Syntax

Notations in production systems modelling are not standardized. Therefore
you will have a lot of freedom coming up with your own notation. The only
requirements are that:

� Your notation does not need to be beautiful, but it must be clear and
understandable.

� The license for downloaded images must be respected. For example,
flaticon.com requires textual attribution which can be placed in your
report.

Figure 1 shows an example production system from the first assignment, and
one representation of it. Note that your solution should be somewhat similar.

As well, the actions, mappers, and parsers of AToMPM must be used to
improve the user experience of modelling the production system:

� Display the percentage chance of acceptance, rework, and failure on in-
spection machines, controlled with attributes on the machine instance.

� Display other useful information as you see fit (such as the name of ma-
chines and operators).

� Model an action that automatically “snaps” a segment when it is con-
nected to another segment.

– As in, when two segments are connected, one moves directly adjacent
to the other.

– Formalisms/Pacman has an example of this in the Positionable

class.

4

flaticon.com


Sphere Arrival

Cube Arrival

Assembler Inspection Incinerator

Straight Loading Bay

Fixer

Straight

Straight

Straight

Straight

Join

Figure 1: An example production system and its model in AToMPM.

5



3 For the Next Assignments

The next assignments will all utilize AToMPM for various model transforma-
tions. Therefore:

� Spend time becoming familiar with AToMPM concepts and interface.

� Report issues, bugs, annoyances, and suggestions to Randy Paredis3.

� Think carefully about your solution, and spend extra time improving the
concrete syntax. To prevent issues in future assignments, make sure you
keep your abstract syntax as close as possible to your solution for the first
assignment

� Look at the AToMPM documentation for how to use transformations, and
if possible begin experimenting.

– The next assignment will use transformations to implement the op-
erational semantics of the production system.

4 Report

There are a number of requirements for the report. Above all, the marker must
be able to read the report and have a clear understanding of all aspects of the
assignment, without having to investigate the model files. I.e., your model files
will only be used as a support for your report, not the other way around!

Specifically, the report must contain:

� A brief outline of how the abstract syntax, concrete syntax, and example
models meet the requirements of the assignment

– This may include metamodels, diagrams, (pseudo-)code, etc. as
needed to provide the essential details of the assignment.

� A discussion of any interesting decisions and assumptions made.

� A discussion of possible improvements to the abstract/concrete syntax.

� A brief description of the constraints present in your languages.

� Three example production systems.

– Two valid, one invalid (which doesn’t meet the constraints).

� For each production system, show:

– A figure of the production system within AToMPM.

3As AToMPM is nearing its end of life, these will not be solved, but rather marked as
checks for the next visual meta-modelling tool.

6



– The results of constraint checking on the invalid production system,
and which constraint fails.

– These production systems should be in medias res (in the middle of
execution). This means that there should be items on belts and at
machines, and operators at machines. This shows the validity of your
concrete syntax.

5 Useful Links and Tips

� AToMPM main page: https://atompm.github.io/

� Download and code: https://github.com/AToMPM/atompm

� Documentation: https://atompm.readthedocs.io/en/latest/

Acknowledgements

Based on an earlier assignment by Bentley Oakes.

Icon authors from www.flaticon.com:

� Sphere - https://www.flaticon.com/authors/good-ware

� Cube, Receiver - https://www.flaticon.com/authors/smashicons

� Belts, Machine, Inspector, Incinerator - https://www.flaticon.com/authors/
freepik

� Assembler - https://www.flaticon.com/authors/catalin-fertu

� Fixer - https://www.flaticon.com/authors/srip

� Walk - https://www.flaticon.com/authors/vitaly-gorbachev

7

https://atompm.github.io/
https://github.com/AToMPM/atompm
https://atompm.readthedocs.io/en/latest/
www.flaticon.com
https://www.flaticon.com/authors/good-ware
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/catalin-fertu
https://www.flaticon.com/authors/srip
https://www.flaticon.com/authors/vitaly-gorbachev

	Practical Information
	Requirements
	Abstract Syntax
	Concrete Syntax

	For the Next Assignments
	Report
	Useful Links and Tips

