
Assignment 5
Code Generation in AToMPM

Randy Paredis
randy.paredis@uantwerpen.be

1 Practical Information
The goal of this assignment is to generate Petri-Nets and formal temporal
logic for the production system modelling language in the visual modelling tool
AToMPM, export these nets and logic to LoLA format, perform the analysis,
and visualize the analysis results back in AToMPM.

This assignment builds on the previous assignment. Make sure you have
fully finished that assignment before continuing, as it will heavily impact your
workflow.

The different parts of this assignment:
1. Export your Petri-Net from AToMPM to metaDepth, and then transform

to LoLA syntax.

2. Build a language for specifying formal temporal logic patterns within
AToMPM.

3. Build your temporal logic formula within AToMPM, and (manually) trans-
form it to LoLA syntax.

4. Verify the formula against the Petri-Net within LoLA, and obtain a trace.

5. Execute the trace within AToMPM on the production system, using the
”fire transition” sequence you created in the previous assignment.

6. Write a report that includes a clear explanation of your complete solution
and the modelling/analysis choices you made, as well as an explanation
of your testing process. Also mention possible difficulties you encountered
during the assignment, and how you solved them.

This assignment should be completed in groups of two if possible, otherwise
individually is permissible.

Submit your assignment as a zip file (report in pdf + model files) on Black-
board before 21 December 2021, 23:59h1. If you work in a group, only one
person needs to submit the zip file, while all others only submit the report.
Contact Randy Paredis if you experience any issues.

1Beware that BlackBoard’s clock may differ slightly from yours.

1



2 Requirements
This section lists the requirements of the above steps and the report. Make sure
to test each requirement with test models!

2.1 Setup
metaDepth Setup Download the file from: http://msdl.cs.mcgill.ca/
people/hv/teaching/MSBDesign/exported_to_md.zip and place the contents
in your AToMPM/exported to md folder. Also copy/move the metaDepth.jar in
the AToMPM/exported to md folder.

LoLA Setup Then you’ll need to install LoLA 2.0, a command-line Petri-Net
analysis tool. LoLA also has a comprehensive manual available within the ‘doc‘
folder describing the analysis possibilities and commands.

Download the files from https://msdl.uantwerpen.be/cloud/public/lola20
and see the README and/or INSTALL for compilation and install directions.

NOTE: LoLA is made specifically for Linux-distributions. On Win-
dows, it can be executed by using Cygwin. It is your own responsibility to get
it working.

2.2 Exporting Petri-Nets to LoLA
1. Generate your Petri-Net model using your rule-based model transforma-

tion from the last assignment.

2. Remove all traceability links and production system elements by closing
the respective toolbars.
NOTE: Make sure you keep a saved version of your model, which allows
for simulation (per assignment 4).

3. Load the metaDepth toolbar (inside of the /Toolbars/MetaDepth/ folder,
it is called Export.buttons.model ). This toolbar has two buttons: one
for exporting models, and one for exporting metamodels.

2

http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/exported_to_md.zip
http://msdl.cs.mcgill.ca/people/hv/teaching/MSBDesign/exported_to_md.zip
https://msdl.uantwerpen.be/cloud/public/lola20


4. Export your custom Petri-Net metamodel by clicking the second button.

• If you did not change the abstract syntax of the Petri-Net formalism,
you can simply use the PN.mdepth file that is located in the zip.

5. Open your factory net and click on the button for exporting models. En-
sure that “exported” is written in the text field. Click OK. This will gen-
erate a file with name “exported.mdepth” in the AToMPM/exported to md
folder.

5. Write your EGL code in the file AToMPM/exported to md/generate LoLA.egl.
This file must generate a valid LoLA model using a template-based ap-
proach.

• To see a template example, examine page 8 of https://metadepth.
org/papers/computer.pdf

• There is an example LoLA model for a Petri-Net of a chat room.
• The repository https://msdl.uantwerpen.be/git/bentley/lola_

utils has a Python script LoLADraw.py to visualize LoLA models.

6. To actually generate the *.lola file, execute the command
java -jar metaDepth.jar < commandlist lola
inside of the AToMPM/exported to md/ folder. This will generate a file
called exported.lola.

7. This new file can be loaded in LoLA to perform your analysis as described
below.

2.3 Building the Temporal Logic Pattern Language
In this part of the assignment, you will create the abstract syntax, concrete syn-
tax, and example models for temporal logic property formulas. These formulas
will be at the level of abstraction of the production system, and will be based
on property specification patterns.

Property specification patterns specify high-level properties about the events
or states of a system. For example, here is a property we are interested to verify

3

https://metadepth.org/papers/computer.pdf
https://metadepth.org/papers/computer.pdf
https://msdl.uantwerpen.be/git/bentley/lola_utils
https://msdl.uantwerpen.be/git/bentley/lola_utils


on our system: “Globally, if a cube and a sphere are at the assembler, then in
Response an assembled item is produced at the assembler eventually.”

From this example, we see the two components of property specification
patterns: Scopes and Patterns

• A Scope defines in what conditions the pattern should hold

– In this assignment, we will consider three scopes: Globally, Before a
state/event, and After a state/event.

• Pattern: which defines which states/events should hold.

– In this assignment, we will consider four patterns: Universality ‘al-
ways a state occurs’, Absence ‘never a state occurs’, Existence ‘even-
tually a state/event occurs’, Response ‘after state/event P occurs,
then state/event S occurs’.

A few examples of interesting properties:

• Example 1: “Globally, it is never the case (Absence) that two items are
on the same segment”.

• Example 2: “Globally, if an assembled item is at the loading bay, then in
Response the loading bay becomes empty”.

• Example 3: “Before an assembled item is at the assembler, it is never the
case (Absence) that an assembled item is at the loading bay”.

• Example 4: “Globally, it is never the case (Absence) that the factory
terminates”.

The abstract and concrete syntaxes of your language will therefore have
to represent these simple temporal logic properties. To represent the state of
the production system, the graphical syntax of the production system must be
connected in some way. For example, the top part of this figure shows the
statement for Example 1, and the bottom part of this figure is for Example 3.

4



• Note: The predicates above refer to a particular state or event of the
production system. That is, we do not refer to the firing of rules on the
production system.

• You will need a special predicate type to handle the state of the factory
stops. This construct will correspond to the Petri Net being deadlocked.

Add constraints and cardinalities as appropriate to the abstract syntax of
the pattern language. Also, try to introduce the informal English statements
(it is never the case, etc.) into the concrete syntax.

2.4 Defining Temporal Logic Properties and Exporting
2.4.1 Creating the Properties

Now that you have a temporal logic language, you will create temporal logic
properties for the production system as models in that language.

Produce six temporal logic properties which are interesting to prove on your
production systems. One must be about the factory running forever/stopping.
In your report, show the property models, write the entire informal English
statement for each property, and describe why it is interesting and what you
expect to happen.

Feel free to reuse the examples above and/or modify them as needed. Note
also that it’s not an issue if one of the properties above cannot be expressed
for your production system, or if the properties you create fail to hold on your
production system. In this assignment, we are concerned with how to check
interesting properties of our model, not on whether your production system has
the correct semantics.

2.4.2 Exporting the Properties

These properties must be exported to the LoLA formula syntax. Note that this
could be achieved by utilizing the Petri-Net creation transformation created in
the last assignment to get the equivalent place markings from the production

5



system elements, and then using a model-to-text exporter to generate the for-
mulas. To simplify matters, you can just create the equivalent LoLA formula
(or series of formulas) manually for each temporal logic property. Make sure to
add them to your report!

For example, the top statement in Figure 2.3 is represented by the LoLA
boundness checks formulas “AG PLACEX <= 1” where PLACEX is the name of ev-
ery place in the Petri-Net which represents a Segment in the production system.

For the bottom statement in Figure 2.3, the formula is more interesting:

1. First, map the predicates to the equivalent Petri-Net markings:

• Pred AtAssembler = (P Assembler HasAssembledItem == 1)

• Pred AtReceiver = (P Receiver HasAssembledItem == 1)

• This depends on how you encode information in your Petri-Net.

2. Then look at the statement as the scope and pattern

• Before Pred AtAssembler, Absence Pred AtReceiver

3. Map the scopes and patterns to the underlying temporal logic using Ta-
ble 1.

• “Before R, Absence P” becomes “Eventually R → (not P until R)”

4. Plug in the Petri Net markings and convert to LoLA syntax

• EVENTUALLY (P Assembler HasAssembledItem = 1)
→ (NOT (P Receiver HasAssembledItem = 1) UNTIL
(P Assembler HasAssembledItem = 1))

2.5 Verification and Executing the Trace
For each one of the temporal patterns and LoLA formulas from the last section,
write in your report the command used to run LoLA for that formula and
the formula result. See the LoLA documentation in the docs/ folder for more
information.

Note that verifying formulas for each place in the Petri-Net is best done with
a (trivial) helper script2: https://msdl.uantwerpen.be/git/bentley/lola_
utils/src/master/LoLARunner.py

Some of the analyses may run for a while on your solution. Try running the
command with and without the ‘–search=’cover’‘ flag to help with this. Consider
a formula to run forever if it has searched hundreds of thousands or millions of
states. If this is the case, argue why this formula could take forever as well as
if/why this proves the formula. Hint: Section 5.2 of the LoLA documentation
discusses flags for early termination of formulas.

If possible, show the marking or firing path for formulas. Section 8.1 and 8.2
of the LoLA manual specify flags for producing markings and paths for formulas.

2You may edit this script however you like.

6

https://msdl.uantwerpen.be/git/bentley/lola_utils/src/master/LoLARunner.py
https://msdl.uantwerpen.be/git/bentley/lola_utils/src/master/LoLARunner.py


Universality P
Globally always(P)
Before R eventually → (P until R)
After Q always(Q → always(P))

Absence P
Globally always(not P)
Before R eventually R → (not P until R)
After Q always(Q → always(not P))

Existence P
Globally eventually(P)
Before R always(not R) or (not R until (P and not R))
After Q always(not Q) or eventually(Q and eventually P))

Response P then S
Globally always(P → eventually S)
Before R eventually R→(P→(not R until(S and not R))) until R
After Q always (Q → always(P → eventually S))

Table 1: Scope and pattern mapping to temporal logic.

Executing the Trace For at least one formula, obtain an interesting firing
path and execute it within AToMPM on your production system. This should
be done using the mechanism for selecting transitions as described in the last
assignment. Document a few steps of this execution in your report, and record
this firing as a video.

Again, it is interesting and you will not lose marks if the trace shows that
something is incorrect in your system, such as your Petri-Net deadlocking. The
point of the assignment is to explore how to use round-trip transformations to
verify your models.

If none of the analyses you perform produces a path, intentionally break your
Petri-Net to produce a deadlocking net. Report how you broke your solution,
and how the trace helps debug the error.

3 Report
There are a number of requirements for the report. Above all, the marker must
be able to read the report and have a clear understanding of all aspects of the
assignment, without having to investigate the model files. I.e., your model files
will only be used as a support for your report, not the other way around!

Specifically, the report must contain:

• A brief outline of how the code template, example models, and formu-
las meet the requirements of the assignment as described in each section

7



above.

• In particular,

– Show your template file in a listing, with syntax colouring and com-
ments.

– Show the property specification language in AToMPM (AS and CS)
and the formula models.

– Show the LoLA formulas and the commands used to verify them.

• A discussion of any interesting decisions made and possible improvements
to any model or language.

• Two example production systems.

• For each production system, show:

– The results and discussion of formula checking for each formula.
– The traces (if any) reported by LoLA.

• Choose one production system and produce a short screen recording of
the Petri-Net execution transformation running and showing interesting
behaviour on a trace produced by LoLA.

– This video should not be submitted with your assignment (due to a
large file size), but a link to where your video can be watched should
be placed in your report. Note: this is not a download link!

– For instance, you can upload it to YouTube, Vimeo, Google Drive,
Dropbox,. . . Note that it should be unlisted, so it cannot be found,
except when using the link.

– A short description could be provided below the video, but no cap-
tions/voiceover/editing is required.

– You can use OBS (https://obsproject.com/) or any other screen
recording software.

4 Useful Links and Tips
• LoLA - Petri Net analyser: https://msdl.uantwerpen.be/cloud/public/lola20

• AToMPM main page: https://atompm.github.io/

• Download and code: https://github.com/AToMPM/atompm

• Documentation: https://atompm.readthedocs.io/en/latest/

Acknowledgements
Based on an earlier assignment by Bentley Oakes.

8

https://obsproject.com/
https://msdl.uantwerpen.be/cloud/public/lola20
https://atompm.github.io/
https://github.com/AToMPM/atompm
https://atompm.readthedocs.io/en/latest/

	Practical Information
	Requirements
	Setup
	Exporting Petri-Nets to LoLA
	Building the Temporal Logic Pattern Language
	Defining Temporal Logic Properties and Exporting
	Creating the Properties
	Exporting the Properties

	Verification and Executing the Trace

	Report
	Useful Links and Tips

