
GRAPH TRANSFORMATION USING GROOVE
Arend Rensink, University of Twente
November 2021

November 2021 Graph transformation using
GROOVE

1

November 2021Graph transformation using GROOVE 2

GRAPH TRANSFORMATION

 Formal language to capture dynamic system behaviour
 Graphs will capture state snapshots
 Transformation rules will capture program statements

 Aim (here): Behavioural analysis
 Qualitative behaviour captured by graph production system
 Requirements captured by logic properties expressed as graphs

 Why graph transformation?
 Very powerful, widely applicable paradigm
 Graphs are natural for many domains
 Makes for (very) rapid prototyping

Note: There is GT life beyond behavioural analysis
• Graph Grammars for reasoning about (non-textual) languages
• Graph Transformation for Model Transformation

November 2021Graph transformation using GROOVE 3

GRAPHS AS STATE MODELS

 Example state graph
 Nodes represents objects
 Edges represent fields or relations between objects

 Here: Circular buffer
 Objects inserted at the tail (last element)
 Objects removed from the head (first element)

November 2021Graph transformation using GROOVE 4

TYPE GRAPHS AS METAMODELS

 Example type graph
 Compare with (UML) class diagrams

 Nodes stand for object types
 Also supported: Node inheritance

 Edges stand for field/relation types
 Not shown here: multiplicities

November 2021Graph transformation using GROOVE 5

GRAPH FORMALISM

 Graphs in this presentation (simple graphs):
 Flat (i.e., not hierarchical)
 Directed, edge-labelled, no parallel edges
 Self-edges depicted as node labels

 Formally: with
 Global set of labels

 Fixed subsets of type labels and flags (node labels)
 finite set of nodes
 finite set of labelled edges

 Partial morphisms
 Structure-preserving node mappings (need not be injective)
 Isomorphism: bijective (total) morphism

 Used to abstract from node identities

November 2021Graph transformation using GROOVE 6

EXAMPLE MORPHISM

 Typing is a (weak) structuring mechanism
 Limits node and edge labels and their interconnection
 Does not enforce presence or absence of edges

State graph Type graph

GRAPH REWRITE RULES

 Graph Production System: Set of rewrite rules
 A rewrite rule embodies a particular change to a graph

 Left Hand Side (LHS): to be matched in the host (source) graph
 Difference of Right Hand Side (RHS) and LHS defines change
 Negative Application Condition (NAC): should not occur in host

graph (there can be any number of these)
 Compare to string rewriting/hyperedge replacement

 Graph rewrite rules are context sensitive

November 2021Graph transformation using GROOVE 7

LHS
RHS

NAC

Putting an element into a circular buffer:

November 2021Graph transformation using GROOVE 8

SINGLE-GRAPH REPRESENTATION

blue = eraser:
LHS, not RHS

to be matched and deleted

green = creator:
RHS, not LHS
to be added

black = reader:
LHS and RHS

to be matched and preserved

red = embargo:
NAC, not LHS

forbidden

November 2021Graph transformation using GROOVE 9

forbidden

GRAPH PRODUCTIONS

Rewrite rule

source
graph

matching

Graph transition
(labelled by rule and underlying morphism)

graph morphism target
graph

pushout

NACNACNACs

LHS RHS
rule morphism

November 2021Graph transformation using GROOVE 10

GRAPH TRANSITION SYSTEMS

put put

putput

get
get

get
get

Isomorphic state graphs
are collapsed together

November 2021Graph transformation using GROOVE

AIM: MODEL CHECKING

 Construct graph production system
 Directly from problem description, or
 From UML diagrams / other specification language, or
 From programs to be checked

 Generate state space
 States = graphs
 Transitions = transformations

 Formulate properties
 State invariants and forbidden patterns (safety)
 Liveness (absence of deadlock)
 Full temporal logic (LTL/CTL)

 Check properties on the model

11

WOLF, GOAT & CABBAGE

Propositiones ad Acuendos Juvenes (n.C.)
(“Problems to sharpen the young”)

November 2021Graph transformation using GROOVE 12

	Graph transformation using GROOVE
	Graph Transformation
	Graphs as state models
	Type graphs as metamodels
	Graph formalism
	Example morphism
	Graph Rewrite Rules
	Single-graph representation
	Graph Productions
	Graph Transition Systems
	Aim: model checking
	Wolf, Goat & Cabbage

