

Multi-Paradigm Modeling Techniques

Thimoty Smet

What's on the menu

- A Few Definitions
- Problem Scenario
- Heterogeneity
 - Issues
- MPM domain
 - What is it?
 - Difficulties
- MPM Techniques

Introduction

A Few Definitions

Modeling language

- Abstract Syntax
- Semantics
- Concrete Syntax

Formalism

- Formal syntax and semantics
- Precisely and unambiguously defined
- Modelling Paradigm
 - Mindset
 - Implemented by several languages or formalisms

Scenario

Designing a big system is tedious

Multiple technical domains required

Multiple stages in development cycle

- Domain
- Abstraction
- Activity
- View

Problem

- Each stage requires change of modeling technique
 - Best technique that fits the goal
- Changes are unavoidable and essential
- →System is described by collection of models
 - Expressed in different languages

Heterogeneity

- Heterogenous models of the same system
 - Do not form global model
- Global model is needed
 - Study of global properties
- Manual integration is tedious and error prone

Heterogeneity – Levels of Difficulty

	Identical Paradigms	Different Paradigms
Identical Languages	Homogenous	Heterogenous (2)
Different Languages	Heterogenous (1)	Heterogenous (3)

Multi-Paradigm Modeling Domain

Multi-Paradigm Modeling Domain

- Address issues
- Easing joint use
- Automation of different actions
 - Transformation
 - Composition
 - Co-execution
 - Etc.

4 sources of difficulties of MPM

- 1. Composition of models from different domains
- 2. Abstraction/refinement relationship
- 3. Joint use of multiple views
- 4. Related models of a system for several activities

Composition of Models from Different Domains

Issues:

- Can models be composed?
- Will composition yield expected result?
- Why?
 - Semantic differences
 - → Comparative analysis
- How do we realize the composition?
- How to verify and preserve semantics of composition?

Abstraction/Refinement Relationship

Conformance relationship

- Preservation constraints on properties
- Issues
 - Refinement process
 - Obtained refined model = refinement of source model
 - Automation of abstraction/refinement through model transformations
 - Composition of models and different abstraction levels

Joint Use of Multiple Heterogeneous Views

Views linked by common elements

- Influence observation
- Issues
 - Consistency
 - Detection of inconsistencies
 - Derivation process to build consistent views
 - Changes in design of system
 - Impact multiple views
 - Merging overlapping views
 - Identification of overlapping

Use of Related Models for Different Activities

- Different models for different design activities
- Issue
 - Different theoretical foundation
 - Different formalisms
 - Difficult consistency

Multi-Paradigm Modeling Techniques

Addressing Capture of Modeling Languages

- Capture syntax and semantics of modeling languages
- Techniques:
 - Kermeta
 - Semantic Units & Anchoring
 - Models of Computation

Translation of Models

- From different language to identical language
- Possibilities:
 - Model as target
 - Different modeling language as target
 - Composition
- Techniques:
 - ATOM3
 - HETS
 - Rosetta

Composition of Modeling Languages

Techniques:

- Composition of meta-models
- Semantic Units

Composition of Models

- Coherent coupling of models
- Based on MoC
- Techniques:
 - Ptomely II
 - ModHel'X
 - '42'
 - Rosetta

Joint Use of Modeling Tools

- Performance and accuracy of tools
- Build bridges
- Techniques:
 - High Level Architecture
 - Co-Simulation Bus

Unifying Semantics

- Semantic support to describe models
- Techniques:
 - Metropolis
 - Inframodels

Other Approaches

Component Based Approaches

- Compatibility checking
- Component Adaptation

Heterogenous Interactions

- BIP
- Architectural Interaction Diagrams
- Megamodels

Conclusion

- Many techniques for a model
- No single type of technique that solves all categories of problems
- Different modeling goals for different problems
- A lot of new formalisms introduced
- Definitely useful for MDE, see ATOMPM

