An Introduction to the HLA
Part 1

Roger McFarlane
School of Computer Science
McGill University
Montreal, CANADA
Overview

- Introduction
 - What is the HLA?
 - Motivation
 - Goals
 - History
- HLA Components
 - The RTI
 - HLA Rules
 - Object Model Templates
- For Next Time …
Introduction

- What is the HLA?
- Motivation
- Goals
- History
What is the HLA?

- A general framework facilitating interoperability and reusability of distributed simulation components
- Developed by the Defense Modeling and Simulation Office (DSMO)
- Developed for the United States Department of Defence (DoD)
- IEEE Standard 1516-2000
Motivation

- Many large/complex simulations involve individual “sub-simulations” of components
- “Sub-simulations” are often heterogeneous (in the type of simulation and type of component)
- Simulators for the components may already exist
- Re-implementing or retrofitting a simulation system is risky and expensive
Goals

- **Reusability**
 - A component simulation may be used in different scenarios and applications over its lifetime

- **Interoperability**
 - Aggregate simulations composed of multiple component simulations
 - Aggregate simulations distributed across heterogeneous hardware and software platforms
 - Reuse without significant code change or development cost
 - Combine component simulations with diverse models of computation and representation
History

1987
SIMNET
DARPA-SACEUR Distributed Wargaming System ACE-89

1988
DSB: Computer Applications to Training and Wargaming Study
limited scope simulation, little interoperability prior to 1988

1989
ALSP: linking of Service Wargames

1990
DoD Simulation Policy Study

1991
New programs (JSIMS, JWARS)

1992
EXCIMS Functional Area Councils

1993
DoD Dir 5000.59 M&S Management

1994
DoD Dir 5000.59-P M&S Master Plan

1995
All Services’ M&S offices in place

1996
DEPSECDEF Memo: EXCIMS formed & DMSO established

1997
DoD VV&A Instruction

1998
SBA Task Force

1999
HLA Begun

2000
HLA Begun

2001
DoD M&S Executive Agents

2001
Architecture Management Group

2001
IEEE 1516

2001
HLA 1.0 Released

2001
HLA MoA

2001
Adopted by OMG

2001
M&S Master Plan
HLA Components

- Definitions & Terms
- Technical Architecture
- HLA Rules
- Object Model Templates
- Run-Time Interface Specification
Definitions & Terms (1)

- **Federate**
 - An application which supports the HLA and is capable of participating in a simulation.

- **Federation**
 - A declaration between federates describing how and what will be simulated.

- **Federation Execution**
 - A run-time instantiation of a Federation; that is, an actual simulation execution.
Definitions & Terms (2)

- The HLA provides the **Federation** formalism by which **Federates** can be modeled such that the framework can support **Federation Execution**
- This is really no different from any other type of modelling and simulation application!
Technical Architecture
Example
Run-Time Infrastructure (1)

- Software layer providing common services to federates
- RTI Specification defines the interfaces federates must use to obtain services and interact with other federates
- RTI Specification defines interfaces to be exposed by federates in order to be recognizable by the services and by other federates
Run-Time Infrastructure (2)

- Improvements on older standards
 - DIS
 - ALSP
- Provides efficient inter-federate communications
- Separate simulation concerns from communication concerns
- Language and platform independent
Service Groups

- Federation management
- Declaration management
- Object management
- Ownership management
- Time management
- Data Distribution management
- Support services
Federation Management

- Controls federation-wide activities during a federation execution
- Services offered:
 - Creation and destruction of federation executions
 - Joining and resigning of federates
 - Pause/Resume federation execution
 - Save/Restore federation execution
Declaration Management

- Manages the publisher/subscriber model for information exchange

- Services Offered:
 - Publish Object/Interaction class
 - Subscribe to Object Class Attribute
 - Subscribe to Interaction Class
 - Control Updates
 - Control Interactions
Object Management

- Manages the lifecycle and message passing for object instances

Services Offered:

- Register/Discover Object
- Update/Reflect Attribute Values
- Send/Receive Interaction
- Remove Object
- Manage Transport/Ordering
Ownership Management

- Supports cooperative modelling by allowing attribute ownership to be transferred across instances

- Services Offered:
 - Assume/Divest Attribute Ownership
 - Acquire/Release Attribute Ownership
 - Notification of ownership changes
Time Management (1)

- Coordinates federate time advancement along the federation time axis
- Attempts to preserve causality and ordering
- Mechanisms supported:
 - Conservative synchronization (with look ahead)
 - Optimistic synchronization (e.g., time warp)
 - Hybrid methods
 - Time-stepped
 - Real-time driven
Time Management (2)

- Federates request permission to advance their local time
- Services offered
 - Request Time Advance
 - Notification of Granting of Time Advance
 - Request Next Event
 - Notification of Granting of Next Event
 - Queue Management
Data Distribution Management

- Efficient data transmission between federates
- Uses routing spaces to direct data only to the interested parties
 - Publisher specifies the update region
 - Subscribes specify their interest region
 - Intersection define routing space
Support Services

- Miscellaneous functionality useful to joined federates
 - Name-to-handle transformation
 - Handle-to-name transformation
 - Setting advisory switches
 - Manipulating regions
 - RTI start-up and shutdown
HLA Rules

- Define the behaviour and capabilities of federates and federations
- Five rules for Federates
- Five rules for Federations
Federation Rules

- Must have an Federation Object Model (FOM) documented using the OMT
- All object representation occur in the Federates, not in the RTI
- Data exchange between instances of objects in different Federates occurs via the RTI
- Federates must interact with the RTI in accordance with the HLA Interface Specification
- During Federation Execution, an instance attribute may be owned by at most one federate at any given time
Federate Rules

- Must have a Simulation Object Model (SOM) documented using the OMT
- Must be able to update/reflect instance attributes and send/receive interactions as specified in their SOM
- Must be able to dynamically transfer/accept ownership of attributes during federation execution as specified in their SOM
- Must be able to vary the conditions under which they provide attribute updates as specified in their SOM
- Must manage their local time in a manner which allows them to coordinate data exchange with other federates
Object Model Templates

- Provide a mechanism for specifying data exchange and coordination within a federation
- Provide a mechanism for describing the capabilities of federate
- Facilitates design and implementation of common tools for building HLA compliant objects
Types of Object Models

- Simulation Object Model (SOM)
- Federation Object Model (FOM)
- Management Object Model (MOM)
SOM – Simulation Object Model

- Information exposed/consumed by a federate
 - Objects
 - Interactions
 - Attributes (of Objects and Interactions)
 - Parameters (of Objects and Interactions)
FOM – Federation Object Model

- Specifies data exchange between federates
 - Objects
 - Interactions
 - Attributes (of Objects)
 - Parameters (of Interactions)
- Provides the “information model contract” which governs the simulation
- Provides the foundation for interoperability
MOM – Management Object Model

- A predefined set of information elements to be included in the FOM
- Contains data relevant to Federation Execution
- Federates may also include referenced to the MOM if they may influence Federation execution.
OMT Components (1)

- Object model identification table
- Object class structure table
- Interaction class structure table
- Attribute table
- Parameter table
- Dimension table
- Time representation table
OMT Components (2)

- User-supplied tag table
- Synchronization table
- Transportation type table
- Switches table
- Datatype tables
- Notes table
- FOM/SOM lexicon
Object Model Identification Table

- Describes object model’s identity
- Useful for developers seeking reusable object models
- Why the object model was constructed
- How the object model was constructed
- Who knows about the object model
- Where to look for more information
Example – Object Model Identification Table

<table>
<thead>
<tr>
<th>Category</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Object Model Name</td>
</tr>
<tr>
<td>Type</td>
<td>“SOM” or “FOM”</td>
</tr>
<tr>
<td>Version</td>
<td>Version Identifier</td>
</tr>
<tr>
<td>Modification Date</td>
<td>Last Modified Date (YYYY-MM-DD)</td>
</tr>
<tr>
<td>Purpose</td>
<td>Why was this object model developed</td>
</tr>
<tr>
<td>Application Domain</td>
<td>Type of Application</td>
</tr>
<tr>
<td>Sponsor</td>
<td>Name of Sponsoring Organization</td>
</tr>
<tr>
<td>POC</td>
<td>Point of Contact’s Name</td>
</tr>
<tr>
<td>POC Organization</td>
<td>Point of Contact’s Organization</td>
</tr>
<tr>
<td>POC Telephone</td>
<td>Point of Contact’s Telephone Number</td>
</tr>
<tr>
<td>POC Email</td>
<td>Point of Contact’s Email Address</td>
</tr>
<tr>
<td>References</td>
<td>Where to look for further information</td>
</tr>
<tr>
<td>Other</td>
<td>Any other relevant data</td>
</tr>
</tbody>
</table>
Object Class Structure Table

- Defines super/sub-class relationships
- For a SOM, classes may be tagged ...
 - P: The federate is capable of publishing at least one attribute of the object class.
 - S: The federate is capable of subscribing to at least one attribute of the object class.
 - PS: Both publish and subscribe
 - N: The federate is neither capable of publishing nor subscribing to any attributes of the object class.
- For a FOM, the same tags indicate if at least one federate is capable of publishing or subscribing to any attribute of the object class.
Example – Object Class Structure Table

<table>
<thead>
<tr>
<th>HLA Object Root (N)</th>
<th>Customer (PS)</th>
<th>Bill (PS)</th>
<th>Order (PS)</th>
<th>Employee (N)</th>
<th>Appétizer (S)</th>
<th>Main Course (PS)</th>
<th>Soup (S)</th>
<th>Clam Chowder (PS)</th>
<th>Manhattan (P)</th>
<th>New England (P)</th>
<th>Beef Barley (PS)</th>
<th>Salad (S)</th>
<th>Seafood (S)</th>
<th>Shrimp (PS)</th>
<th>Salmon (PS)</th>
<th>Pasta (PS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food (S)</td>
<td></td>
<td></td>
<td></td>
<td>Employee (N)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Waiter (PS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cashier (PS)</td>
<td></td>
</tr>
</tbody>
</table>

Interaction Class Structure Table

- Specific actions which a federate may perform
- Hierarchy similar to Object Class Structure Table
- SOM Interactions may be tagged
 - P: The federate is capable of publishing the interaction class
 - S: The federate is capable of subscribing to the interaction class
 - PS: Both publish and subscribe
 - N: The federate is neither capable of publishing nor subscribing to the interaction class
- Same tags used for a FOM meaning there does (not) exist a federate capable of publishing/subscribing to the interaction class.
<table>
<thead>
<tr>
<th>HLA Object Root (N)</th>
<th>Customer Transaction (P)</th>
<th>Customer Seated (PS)</th>
<th>Order Taken (P)</th>
<th>Food Served (P)</th>
<th>Customer Pays (P)</th>
<th>Customer Leaves (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>From Kids Menu (P)</td>
<td>From Adult Menu (P)</td>
<td>Drink Served (P)</td>
<td>By Credit Card (P)</td>
<td>By Cash (P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Appetizer Served (P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Main Course Served (P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dessert Served (P)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attribute Table

- Properties of an object
- May be published by the object
- Other objects may subscribe to an attribute
- Declare how/when an attribute value changes
- Declares if attribute ownership may be transferred between objects
 - DA = Divest & Acquire
 - N = Neither
- The transport used to communicate the attribute
Example – Attribute Table

<table>
<thead>
<tr>
<th>Object</th>
<th>Attribute</th>
<th>Data Type</th>
<th>Update Type</th>
<th>Update Condition</th>
<th>D/A</th>
<th>P/S</th>
<th>Available Dimensions</th>
<th>Transportation</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>PTDO</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>N</td>
<td>N</td>
<td>NA</td>
<td>HLAReliable</td>
<td>Timestamp</td>
</tr>
<tr>
<td>Employee</td>
<td>PayRate</td>
<td>Dollars</td>
<td>Cond.</td>
<td>Merit</td>
<td>DA</td>
<td>PS</td>
<td>NA</td>
<td>HLAReliable</td>
<td>Timestamp</td>
</tr>
<tr>
<td></td>
<td>Seniority</td>
<td>Years</td>
<td>Periodic</td>
<td>+1/year</td>
<td>DA</td>
<td>PS</td>
<td>NA</td>
<td>HLAReliable</td>
<td>Timestamp</td>
</tr>
<tr>
<td></td>
<td>Phone</td>
<td>Text</td>
<td>Cond.</td>
<td>Empl. Req.</td>
<td>DA</td>
<td>PS</td>
<td>NA</td>
<td>HLAReliable</td>
<td>Timestamp</td>
</tr>
<tr>
<td></td>
<td>Address</td>
<td>Text</td>
<td>Cond.</td>
<td>Empl. Req.</td>
<td>DA</td>
<td>PS</td>
<td>NA</td>
<td>HLAReliable</td>
<td>Timestamp</td>
</tr>
<tr>
<td></td>
<td>Manner</td>
<td>WaiterValue</td>
<td>Cond.</td>
<td>Perf. Rev.</td>
<td>DA</td>
<td>PS</td>
<td>NA</td>
<td>HLAReliable</td>
<td>Timestamp</td>
</tr>
<tr>
<td></td>
<td>State</td>
<td>WaiterTask</td>
<td>Cond.</td>
<td>Work Flow</td>
<td>DA</td>
<td>PS</td>
<td>NA</td>
<td>HLAReliable</td>
<td>Timestamp</td>
</tr>
</tbody>
</table>
Parameter Table

- Additional information to characterize an interaction
- Identify the transport used to deliver the parameter
- Identify the ordering constraints for the parameter
 - Timestamp
 - Receive (indeterminate order)
Example – Parameter Table

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Parameter</th>
<th>Datatype</th>
<th>Available Dimensions</th>
<th>Transportation</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Seated</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>HLAReliable</td>
<td>Timestamp</td>
</tr>
<tr>
<td>FoodServed. MainCourse Served.</td>
<td>TemperatureOK</td>
<td>ServiceStat</td>
<td>WaiterID</td>
<td>HLAReliable</td>
<td>Timestamp</td>
</tr>
<tr>
<td></td>
<td>AccuracyOK</td>
<td>ServiceStat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TimelinessOK</td>
<td>HLABoolean</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dimension Table

- Maps domain specific data values onto integer values ranging from zero to some upper bound
- Specifies the legal values which may be transmitted across the RTI
- Enables Data Distribution Management (DDM) and Declaration Management (DM)
- Used to specify update and subscribe regions to the RTI
Example – Dimension Table

<table>
<thead>
<tr>
<th>Name</th>
<th>DataType</th>
<th>Upper Bound</th>
<th>Normalization</th>
<th>Value If Not Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>SodaFlavour</td>
<td>flavourType</td>
<td>3</td>
<td>LinearEnumerated(Flavour, {Cola, Orange, Grape})</td>
<td>[0..3)</td>
</tr>
<tr>
<td>BarQuantity</td>
<td>DrinkCount</td>
<td>25</td>
<td>Linear(NumberCups, 0, 25)</td>
<td>[0..1)</td>
</tr>
<tr>
<td>WaiterId</td>
<td>Empld</td>
<td>20</td>
<td>Linear(WaiterId, 0, 20)</td>
<td>Excluded</td>
</tr>
</tbody>
</table>
Time Representation Table

- Declares the format used to represent time
 - For a federate
 - Across a federation
- Declares the semantics of time
 - For a federate
 - Across a federation
- Used by the RTI to coordinate federates during federation execution
Example – Time Representation Table

<table>
<thead>
<tr>
<th>Category</th>
<th>Datatype</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>TimeType</td>
<td>Floating point value expressed in minutes</td>
</tr>
<tr>
<td>LookAhead</td>
<td>LAType</td>
<td>Non-negative floating point value expressed in minutes</td>
</tr>
</tbody>
</table>
User-Supplied Tag Table

- Extensible mechanism for specifying auxiliary data
- Provides additional control and coordination of services provided by the HLA
Example – User-Supplied Tag Table

<table>
<thead>
<tr>
<th>Category</th>
<th>Datatype</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update/Reflect</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Send/Receive</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Delete/Remove</td>
<td>HLAascii</td>
<td>Reason for deletion</td>
</tr>
<tr>
<td>Divestiture Request</td>
<td>PriorityLevel</td>
<td>High value for immediate transfer</td>
</tr>
<tr>
<td>Divestiture Completion</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Acquisition Request</td>
<td>PriorityLevel</td>
<td>High value for immediate transfer</td>
</tr>
<tr>
<td>Request Update</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Synchronization Table

- Provides a federate synchronization mechanism
- Federates declare the synchronization points they support
- Federations describe the synchronization points to be used
Example – Synchronization Table

<table>
<thead>
<tr>
<th>Label</th>
<th>Tag Datatype</th>
<th>Capability</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>InitialPublish</td>
<td>NA</td>
<td>Achieve</td>
<td>Achieved when all classes are published and subscribed, and all initially present objects are registered</td>
</tr>
<tr>
<td>InitialUpdate</td>
<td>NA</td>
<td>Achieve</td>
<td>Achieved when instance attribute values for all initially present objects are updated</td>
</tr>
<tr>
<td>BeginTimeAdvance</td>
<td>NA</td>
<td>Achieve</td>
<td>Achieved when time management services are invoked</td>
</tr>
<tr>
<td>PauseExecution</td>
<td>TimeType</td>
<td>Register</td>
<td>Achieved when the time advance after the time in the user-supplied tag is attained; time advance requests should then cease</td>
</tr>
</tbody>
</table>
Transportation Type Table

- The RTI provides different mechanisms for transport of interactions and attributes between federates
- Allows a federate designer to describe the transports supported by the federate
- Allows federation designers to describe the transportation contracts between federates
Example – Transportation Type Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLAreliable</td>
<td>Provide reliable delivery of data in the sense that TCP/IP delivers its data reliably</td>
</tr>
<tr>
<td>HLAbestEffort</td>
<td>Make an effort to deliver data in the sense that UDP provides best-effort delivery</td>
</tr>
<tr>
<td>LowLatency</td>
<td>Choose the delivery mechanism that results in the lowest latency from service initiation to callback invocation at the receiving federate</td>
</tr>
</tbody>
</table>
Switches Table

- Configuration of RTI activities performed on behalf of a federate
- A few services are configured globally for the federation
 - Auto Provide, Convey Region Designator Sets
- Most services are configured per federate
 - Attribute Scope Advisory, Attribute Relevance Advisory, Object Class Relevance Advisory, Service Reporting
- Services may be either enabled or disabled
Switch Definitions (1)

- **Auto Provide**
 - (Global) Should the RTI automatically solicit updates from instance attribute owners when an object is discovered.

- **Convey Region Designator Sets**
 - (Global) Should the RTI provide the optional Sent Region Set argument with invocations of Reflect Attribute Values and Receive Interaction.

- **Attribute Scope Advisory**
 - Should the RTI advise federates when attributes of an object instance come into or go out of scope.
Switch Definitions (2)

- **Attribute Relevance Advisory**
 - Should the RTI advise federates about whether they should provide attribute value updates for the value of an attribute of an object instance.

- **Object Class Relevance Advisory**
 - Should the RTI advise federates about whether they should register instances of an object class.

- **Interaction Relevance Advisory**
 - Should the RTI advise federates about whether they should send interactions of an interaction class.

- **Service Reporting**
 - Should the RTI report service invocations using MOM.
Example – Switches Table

<table>
<thead>
<tr>
<th>Switch</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto provide</td>
<td>Disabled</td>
</tr>
<tr>
<td>Convey region designator sets</td>
<td>Disabled</td>
</tr>
<tr>
<td>Attribute scope advisory</td>
<td>Enabled</td>
</tr>
<tr>
<td>Attribute relevance advisory</td>
<td>Enabled</td>
</tr>
<tr>
<td>Object class relevance advisory</td>
<td>Enabled</td>
</tr>
<tr>
<td>Interaction relevance advisory</td>
<td>Enabled</td>
</tr>
<tr>
<td>Service reporting</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Data Type Tables (1)

- Globally define data types referenced in other tables
- Basic Data Table
 - Name, Size in Bits, Interpretation, Endian, Encoding
- Simple (Scalar) Data Table
 - Name, Representation, Units, Resolution, Accuracy, Semantics
- Enumerated Data Table
 - Name, Representation, Enumerator, Values, Semantics
Data Type Tables (2)

- **Array Data Table**
 - Name, Element Type, Cardinality, Encoding, Semantics

- **Fixed Record Data Table**
 - Record Name, Field-{Name, Type, Semantics}* Encoding, Semantics

- **Variant Record Data Table**
 - Record Name, Encoding, Semantics, Discriminant-{Name, Type, Semantics}* Alternative--{Name, Type, Semantics}*
Notes Table

- Named annotations may be attached to any OMT entry
- A set of name/value pairs
- Value is free form explanatory text
- Name uniquely identifies the corresponding explanatory text
- Notes may be referenced multiple times
FOM/SOM Lexicon

- Name/Value pairs
- Dictionary tables associating every class, attribute, interaction, parameter, etc (by name) with a free form text description (value)
For Next Time …

- A deeper look at the RTI
References (1)

References (2)

- Roy Crosbie and John Zenor, “High Level Architecture, Module 1 – Basic Concepts, Parts 1-6.” California State University, Chico. http://www.ecst.csuchico.edu/~hla
- <Steffen Strassburger's text>