

IBM Software Group

Rational. software

Bubbles of Steel: A Preview of UML 2.0 and MDA

Bran Selic bselic@rational.com

↑

@business on demand software

Presentation Overview

Part 1: Models, software models, and MDA

- Why and how software models are changing the way we develop software
- Part 2: A preview of UML version 2.0
 - UML 2.0 = the first major revision of UML
 - Important new language features and modeling capabilities

A Skeptic's View of Software Models...

"...bubbles and arrows, as opposed to programs, ...never crash"

> -- B. Meyer *"UML: The Positive Spin"* American Programmer, 1997

Engineering Models

Before they build the real thing...

...they first build models ... and then learn from them

IBM

Engineering Models

Engineering model: A reduced representation of some system

Modeled system

Model

• Purpose:

To help us understand a complex problem or solution To communicate ideas about a problem or solution

Characteristics of Useful Models

Abstract

- Emphasize important aspects while removing irrelevant ones
- Understandable
 - Expressed in a form that is readily understood by observers
- Accurate
 - Faithfully represents the modeled system
- Predictive
 - Can be used to derive correct conclusions about the modeled system

Inexpensive

Much cheaper to construct and study than the modeled system

To be useful, models have to possess <u>all</u> of these characteristics!

How Models are Used

- To detect errors and omissions in designs before committing full resources to full implementation
 - Through (formal) analysis and experimentation
 - Investigate and compare alternative solutions
 - Minimize engineering risk
- To communicate with stakeholders
 - Clients, users, implementers, testers, documenters, etc.
- To drive implementation

A Problem with Models

Semantic Gap due to:

- Idiosyncrasies of actual construction materials
- Construction methods
- Scaling effects
- Skill sets
- Misunderstandings

Can lead to serious errors and discrepancies in the realization

Models of Software

- Abstracts out irrelevant detail
- Presents the software using higher-level abstractions

Evolving Models

Adding detail to a high-level model:

Software has the rare property that allows us to directly evolve models into full-fledged implementations without changing the engineering medium, tools, or methods!

Model-Driven Development and MDA

 An approach to software development in which the focus and primary artifacts of development are <u>models</u> (as opposed to programs)

"The model is the implementation"

Covering the Full Range of Detail

"Action" languages (e.g., Java, C++) for fine-grain detail

Example Spec

 Each abstraction level specified using most appropriate form

How We Learn From Models

By inspection

- mental execution
- unreliable
- By formal analysis
 - mathematical methods
 - reliable (theoretically)
 - but: software is very difficult to model accurately!
- By experimentation (execution)
 - more reliable than inspection
 - direct experience/insight

MDD Implications

- Ultimately, it should be possible to:
 - Execute models
 - Translate them automatically into implementations
 - ...possibly for different implementation platforms
- Modeling language requirements
 - The semantic underpinnings of modeling languages must be precise and unambiguous
 - It should be possible to easily specialize a modeling language for a particular domain
 - It should be possible to easily define new specialized languages

IBM

The OMG's Model Driven Architecture

- The OMG has formulated an initiative called "Model-Driven Architecture" (MDA)
 - A framework for a set of standards in support of a model-driven style of development
 - Inspired by the widespread public acceptance of UML and the availability of mature MDD technologies
- Rational is a pioneer of model-driven development and is one of the principal drivers of MDA
 - Conceived and refined UML (Booch, Rumbaugh, Jacobson)
 - Model-driven development process (RUP)
 - Tools for executable models and automatic code generation (XDE, Rose RealTime, Rose)

The Languages of MDA

Set of modeling languages for specific purposes

UML: The Foundation of MDA

The Unified Modeling Language – version 2.0: Fundamentals

IMPORTANT DISCLAIMER!

The technical material described here is still under development and is subject to modification prior to adoption by the OMG

Formal RFP Requirements

Infrastructure – UML internals

- More precise conceptual base for better MDA support
- Superstructure User-level features
 - New capabilities for large-scale software systems
 - Consolidation of existing features
- OCL Constraint language
 - Full conceptual alignment with UML
- Diagram interchange standard
 - For exchanging graphic information (model diagrams)

Approach: Evolutionary

- Improved precision of the infrastructure
- Small number of new features
- New feature selection criteria
 - Required for supporting large industrial-scale applications
 - Non-intrusive on UML 1.x users (and tool builders)
- Backward compatibility with 1.x

Language Structure

- A core language + optional "sub-languages"
 - Enables flexible subsetting for specific needs
 - Users can "grow into" more advanced capabilities

- Eliminates semantic overlap
- Better foundation for a precise definition of concepts and semantics

Infrastructure: Behavior Harmonization

- Common semantic base for all behaviors
 - Choice of behavioral formalism driven by application needs

Structure Modeling: UML as an Architectural Description Language

IBM

Structured Classes: External View

- Distributed active (concurrent) objects with
 - Full two-way encapsulation
 - Multiple interaction points: <u>ports</u>

Ports

Boundary objects that

- help separate different (possibly concurrent) interactions
- fully isolate an object's internals from its environment

"There are very few problems in computer science that cannot be solved by adding an extra level of indirection"

Port Semantics

- A port can support multiple interface specifications
 - Provided interfaces (what the object can do)
 - Required interfaces (what the object needs to do its job)

Protocols: Reusable Interaction Sequences

- Communication sequences that
 - always follow a pre-defined dynamic order
 - occur in different contexts with different specific participants

- Important architectural tool
 - Defines valid interaction patterns between architectural elements

Modeling Protocols with UML 2.0

- Modeled by a set of interconnected interfaces whose features are invoked according to a formal behavioral specification
 - Based on the UML collaboration concept
 - May be refined using inheritance

Operator Assisted Call

35

Associating Protocols with Ports

- Ports play individual protocol roles
 - Ports assume the protocol roles implied by their provided and required interfaces

Assembling Communicating Objects • Ports can be joined by connectors to create peer collaborations composed of structured classes remote sender : Fax

Connectors model communication channels A connector is constrained by a protocol Static typing rules apply (compatible protocols)

remote

Structured Classes: Internal Structure

 Structured classes may have an internal structure of (structured class) parts and connectors

Structure Refinement Through Inheritance

TRM

Modeling Complex Interactions

Overview of New Features

- Interactions focus on the communications between collaborating instances communicating via messages
 - Both synchronous (operation invocation) and asynchronous (signal sending) models supported
- Multiple concrete notational forms:
 - sequence diagram
 - communication diagram
 - interaction overview diagram
 - timing diagram
 - interaction table

Example: Interaction Context

All interactions occur in structures of collaborating parts
 the structural context for the interaction

Interaction Occurrences

Combined Fragments and Data

Interaction Overview Diagram

An interaction with the syntax of activity diagrams

Dynamic Process Modeling Capabilities (Activities)

Hierarchical Partitions

Extended Concurrency Model

Fully independent concurrent streams ("tokens")

Activities: Token Queuing Capabilities

Tokens can

- queue up in "in/out" pins.
- backup in network.
- prevent upstream behaviors from taking new inputs.

- ...or, they can flow through continuously
 - taken as input while behavior is executing.
 - given as output while behavior is executing.

New Statechart Modeling Capabilities

State Machine Improvements

- New modeling constructs:
 - Modularized submachines
 - State machine specialization/redefinition
 - State machine termination
 - "Protocol" state machines
 - transitions pre/post conditions
 - protocol conformance

Notational enhancements

- action blocks
- state lists

Modular Submachines: Definition

Modular Submachines: Usage

IBM Software Group | Rational. software

Specialization

Redefinition as part of standard class specialization

Example: State Machine Redefinition

State machine of ATM to be redefined

State Machine Redefinition

Summary

- The "next generation" UML represents a significant evolutionary step:
 - Balance of consolidation and feature extensions
 - Modularized (core + optional specialized sub-languages)
 - Increased semantic precision and conceptual clarity
 - Supports full diagram interchange
 - Full alignment with MOF
 - Suitable MDA foundation (executable models, full code generation)
- New modeling features chosen for modeling large-scale systems
- Expected availability: 2003

OUESTIONS?

(bselic@rational.com)

59