

Report

Open distributed systems

Executable UML

Geir Melby

Open Distributed Systems, Seminar Report - Executable UML

Page 2 Geir Melby

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 3

Content
1 INTRODUCTION .. 5

1.1 Background... 5
1.2 Objectives ... 5
1.3 Convention.. 5
1.4 Readers guideline.. 6
2 UML 2.0.. 7

2.1 History and current status of the language.. 7
2.2 Superstructure and Infrastructure parts of UML... 8
2.3 Improvements UML 2.0.. 8
2.4 Architectural concepts .. 8
2.4.1 Parts and Connectors... 8
2.4.2 Ports .. 10
2.5 Behavior concepts... 10
2.5.1 Entry/Exit points ... 11
2.5.2 Generalization ... 12

2.6 Interaction diagrams.. 13
2.6.1 References... 13
2.6.2 Decomposition .. 14
3 SERVICEFRAME .. 16

3.1 ServiceFrame overview .. 16
3.1.1 ServiceFrame .. 16
3.1.2 ActorFrame ... 16
3.1.3 ActorFrame protocol ... 17
3.2 Service specification ... 19
3.2.1 ActorFrame behavior .. 19
3.3 Implementation of new Actors.. 20
4 TOOL – TAU 2.0.. 22
5 EXAMPLE OF UML MODEL – A CHAT APPLICATION... 23
5.1 Domain model... 23
5.2 Design model .. 24
5.2.1 Class model... 24
5.2.2 Interaction diagram ... 26
5.2.3 Classes with architecture and behavior diagrams ... 28
5.2.4 Validation of the model .. 33
6 EXPERIENCES.. 38

6.1 UML2.0 support in the tool .. 38
6.2 UML 2.0 standard ... 38
6.3 Tool... 41
6.4 MDA approach.. 42
7 CONCLUSIONS... 43
8 REFERENCES ... 44

APPENDIX A – CHAT APPLICATION MODEL .. 46

8.1 Class model... 46

Open Distributed Systems, Seminar Report - Executable UML

Page 4 Geir Melby

8.2 Signals definition .. 47
8.3 RoleManager - RoleRequest ... 48
8.4 RoleManager - RoleEnd ... 49
8.5 Client... 50
8.6 Class Chat - RolePlay ... 51
8.7 Class Chat - RoleRelease .. 52
8.8 Class Client ... 53
8.9 Class ChatService – Internal structure .. 54
8.10 Class Users.. 55
8.11 Sequence diagram Chatting .. 56
8.12 Sequence diagram Chatting with references ... 57
8.13 Domain model... 58
8.14 Sequence diagram chatting ... 59
APPENDIX B – TRACE OF CHATTING ... 60

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 5

1 Introduction

1.1 Background
Ericsson has for long time used formal languages to make executable models. AXE 10, the most
successful line switch ever made was originally described using FDL (Functional Description
Language) to describe the behavior and structure of the system. During the nineties the AXE
development started to use SDL (Specification and Description Language) an ITU standard for
design, simulation, verification and 100% code generation to the target platforms.

The background for this formal approach is motivated by the complexity, quality requirements,
complexity of behavior and the size of the products. At the end of the nineties Ericsson supported the
development of UML, which is now the preferred specification and design language to be used in
new product development in Ericsson.

Earlier versions of UML are lacking the formalism needed to make executable models of complex
real time systems. Ericsson has therefore in the RFP for UML2.0 made proposals for more advanced
architectural and behavior concepts. Ericsson has also requested a more powerful language for
interactions based on the MSC language standardized of ITU.

NorARC (Norwegian Applied Research Center) has developed a prototype of an execution
framework for a role-oriented approach, called ActorFrame. ActorFrame is implemented in Java and
it is based on JavaFrame that is an execution platform for communicating state machines according
to the proposed UML 2.0 standard. ActorFrame is used to make a framework for creation and
execution of services. It is called ServiceFrame and it can be used both to develop traditional telecom
services, Internet like applications and a combination of these.

Object Management Group (OMG) has changed the focus from Corba standard as a platform and
language independent middleware for integration of systems, to a Model Driven Architecture
approach (MDA) where UML is the core. From platform independent models (PIM) they foresee
transformation to platform dependent models from where code can be generated to different
platforms and middleware. This is an approach that is supported by Ericsson. There are books on
market that describes how to use UML (version 1.4 or earlier) to make executable models with
UML.

1.2 Objectives
The main objectives for this study are

• To identify the main improvements of UML 2.0
• To make an executable UML model for a simple application based on ActorFrame principles
• To evaluate if UML 2.0 can be used to make advanced executable framework models like

ActorFrame

1.3 Convention
Substantives in italics and starting with a capital letter are classes in UML. For instance Actor is a
class Actor and anActor is an instance of class Actor. Substantives with ordinary format and starting
with a capital letter, represent concepts or names that are used in the context of this report. For
instance ActorFrame is the name of a framework used in the ServiceFrame.

Open Distributed Systems, Seminar Report - Executable UML

Page 6 Geir Melby

1.4 Readers guideline
This report presents in chapter 2 the new concepts in the current proposal to new UML2.0 standard.
In chapter 3 is ServiceFrame described with focus on those part that are most relevant for the Chat
example that will be modelled. An UML model of the the Chat example and the results from the
simulation of the Chat model are presented in chapter 5. The experiences from the study are
presented in chapter 6. At last in chapter 7 is the conclusion from the study presented. The Tau 2.0
UML tool from Telelogic will be used in this evaluation.

The report does not give detailed descriptions of UML and ServiceFrame and the report is written for
readers that in advance are familiar with those concepts that are used in the report. A whitepaper
about ServiceFrame is found in [4]. It may also be useful for the readers that are not familiar with
statemachines and advanced interactions diagrames to read the SDL [5] and the MSC [6] standard.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 7

2 UML 2.0

2.1 History and current status of the language
Rational with Ivar Jacobsson, James Rumbough and Grady Booch made UML 1.0 in 1997. It was
based on these author’s earlier methodology and language work. A brief history of the language can
be found in [ref]. A revised version of UML 1.1 was offered to OMG, which took the responsibility
for the further development of the language. During fall 1998 OMG Revision Task Force (RTF)
released version 1.3, which have up to now been the version that tools have supported.

Version 1.4 was released late 2001. It included an action language for definition of behavior used in
operations and state machines definitions. This was an important step towards a more precise
language. A constraint language called Object Constraint Language (OCL) is also a part of UML
language. OCL is up to now mainly been used to make the metamodel of UML more precise.
Designer may also use OCL to make constraints in the model. Supported by tools, OCL and the
action language, can significantly improve the preciseness of the model.

A new Request For Proposal (RFP) was submitted in 1999. The work was split in work group for
minor a new revision version 1.4 and a major revision of the language called UML2.0.

The RFP has defined following goals that are based on more than 20 proposals:

1. Restructure and refine the language to make it easier to apply, implement and
customize by

Increase precision

Reuse packages

2. Infrastructure part

Enable reuse of Core constructs used to define UML2 in other Model-Driven
Architecture standards

Provide more powerful mechanisms to customize UML

3. Superstructure part

Support component-based development using platform independent components and
platform specific components

Provide architectural structures that allow hierarchical composition of parts
and interfaces

Allow separate semantics for activities and state machines

Support composition of sequence diagrams

Refine other constructs and notations (e.g. use cases, relationships)

Ericsson is participating in a consortium named U2 partners (http://www.u2-partners.org). The main
actors are Rational, IBM, I-Logix, Motorola, Oracle, Telelogic, Unisys, HP, Business Software,
IONA, Alcatel, CA, ENEA, Jaczone, Kabira, Unisys and WebGain. In addition has the consortium a
group of supporters. Together they form a good mix of users and tool vendors. There are other
contributors to the final proposal, but there is no real competition on the main parts of contribution
from U2. A beta version of the proposal from U2 consortium was released in September 2002 and it
is planned to submit a final release to OMG RTF during january 2003.

Open Distributed Systems, Seminar Report - Executable UML

Page 8 Geir Melby

Ericsson got most of the wanted requirements into the RFP (marked bold in the goals described
above) and so long they have had a strong influence on the parts of the standard that are important
for Ericsson.

The beta releases [2,3] from September 2002 are used in this report.

2.2 Superstructure and Infrastructure parts of UML
The work in U2 consortium has been organized in to groups according to the 2 RFP, Infrastructure
and Superstructure. There are also groups for OCL language and XMI. The Infrastructure group has
been working mainly with the kernel package to make it compliant with the Meta Object Language
(MOF). At the same time the MOF is undergoing similar revisions to have MOF 2.0, so alignment is
not trivial While the Superstructure group has worked with that part of the metamodel for
introducing elements representing structural architecture and behavior features. In this context is the
Superstructure work that is most interesting because their work will define the new concepts that the
designer will use.

The final Class concept in UML is very central when it comes to structural behavior and
architectural concepts. Important metaclasses are Classifier and its subtypes StructuredClassifier
that introduce the parts and BehavioredClassifiers that introduce inheritance of behavior.

2.3 Improvements in UML 2.0
The superstructure improvements are most interesting as they define those concepts to be used by
designers. These are

• Changes of internal architectural structure and behavior as introduction of parts, connectors,
ports and generalization.

• Components with improved encapsulation through ports and with internal structure of parts
with connectors between parts.

• Activities use flow semantics instead of state machines. Action semantics and activities are
supposed to be merged.

• Interactions are improved with better architectural and control concepts as composition,
sequence diagram references, exceptions, loops and alternatives.

2.4 Architectural concepts
There have been introduced new elements that are representing structural architecture of the meta
class StructuredClassifier. The motivation for these changes is that some elements shall only exist in
a specific context. In addition there is a need for better encapsulation of Classifier. Good
encapsulation concepts are important for specification of independent components and classes. The
Part, Connector and Port are proposed concepts to be used to achieve this.

2.4.1 Parts and Connectors
The example used in the proposal is illustrated in Figure 1. The class model describes a Car that
consists of Axle, Wheel and an Engine. Each Axle is connected to at least two and at most four Wheel
(may be three wheels). Each Axle is also connected to an Engine. The Boat consists of an Engine and
Propellers. From this model it is possible that the same instance of Engine is connected to aAxle in a
car and aPropeller in a boat at the same time.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 9

WheelAxle

1 2..41

Car

1

2..*

11 1

WheelAxle

1 2..41

Car

1

2..*

11 1

Engine

11
11

1

1

Engine

11
11

1

1

Propellor

Boat

1..*

1

11
11

1..*

1
0..1

0..1

1..*

Propellor

Boat

1..*

1

11
11

1..*

1
0..1

0..1

1..*

0..*

Figure 1 Composition versus parts

And that is obviously not what the model should express. The model should describe the Engine
independent of its use (encapsulation) and describe more precisely that an instance of Engine is part
of aCar and is connected to aAxle of that Car. Another instance of Engine is part of aBoat and
connected to an aPropellor of that boat. This is main motivation for introducing the Part and
Connector concept.

In Figure 2 the Car has got an internal structure of parts of other classes and connectors that are
connecting the different parts together through ports. These internal parts and connectors will only
exist as a part of an instance of the class Car. So when an aCar is created, e:Engine is connected to
d:Axle that has 2 instances of dw:Wheel. The car has also one or more sets of Axle where each n:Axle
has exactly one pair of nw:wheel connected. It also describes that the same instance of class Engine
cannot be parts of both a car and a boat, which is possible according to the model shown in Figure 2.

Open Distributed Systems, Seminar Report - Executable UML

Page 10 Geir Melby

Car

dw:Wheel [2]

2

d:Axle [1]

n:Axle [1..*] nw:Wheel [2..*] / 2

e:Engine

Car

dw:Wheel [2]

2

d:Axle [1]

n:Axle [1..*] nw:Wheel [2..*] / 2

e:Engine

Figure 2 Class with internal structure

2.4.2 Ports
When instances shall be connected together, the connection point has to be described formally. The
concept of Port describes an entry and an exit point for a class as described in Figure 3. A port
encapsulates communication for an EncapsulatedClassifier. It contains a provided interface that
specifies services offered by the classifier and its environment and a required interface that describes
services the classifier expects from its environment.

 Engine

jdfkklf :X1

mncvjsfd :Z3

wweqdjf :W4

joioerj:Y2

Engine

jdfkklf :X1

mncvjsfd :Z3

wweqdjf :W4

joioerj:Y2

powers
Shaft

accellerate
break
...

<<Interface>>
Shaft

accellerate
break
...

<<Interface>>
Shaft

accellerate
break
...

<<Interface>>

Figure 3 Ports connected to classes

Figure 4 shows a class Engine with a port on its environment. All communication to or from the
class has go through this port named powers. Use of ports enables specification of a class without
knowing anything about the environment where the class may be used. Classes can send and receive
signals via ports, and a class can expose operations through a port. Ports also relay communication
along connectors.

2.5 Behavior concepts
The major changes of the state machines in UML are

• Composite state with entry/exit points that increases the scalability and independence of
behavior specification.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 11

• State machine generalization that enables inheritance and specialization of behavior.
• Protocol state machines that enables specifying of allowed sequences of signals and operation

calls.
• State machine for operations that enables procedural like calls on state machines.
• State groups that enable common behavior of events in different states.

Entry/exit and generalization concepts are described below.

2.5.1 Entry/Exit points
Earlier versions of UML have no limitations on how to entry and exit composite states (Substates).
It is still legal to enter directly into a new state of the composite state and it is therefore difficult to
specify behavior components that may be reused in another state machines. An example of a
definition of a Substate with entry and exit points is shown in Figure 5. And an example on how to
use entry and exit points of the Substate ReadAmountSM is shown in Figure 5.

For example if the state machine ATM gets an input signal rejectTransaction in state
VerifyTransaction, the transition enter the substate ReadAmount through the port again. This port is
connected to the EnterAmount state.

An unnamed entry or exit point represents default behavior. You may have several entry and exit
points.

Open Distributed Systems, Seminar Report - Executable UML

Page 12 Geir Melby

ReadAmountSM

selectAmount

EnterAmount

ok

abort

aborted

amount

otherAmount

abort

again

ReadAmountSM

selectAmount

EnterAmount

ok

abort

aborted

amount

otherAmount

abort

again

Figure 4 Definition of Exit / Entry points

VerifyCard

OutOfService

acceptCard

ReleaseCardVerifyTransaction

outOfService

releaseCard

ATM

ReadAmount :
ReadAmountSM

aborted

rejectTransaction

again

VerifyCard

OutOfService

acceptCard

ReleaseCardReleaseCardVerifyTransaction

outOfService

releaseCard

ATM

ReadAmount :
ReadAmountSM

aborted

rejectTransaction

again

Figure 5 Use of Exit / Entry points

2.5.2 Generalization
The generalization and specialization concepts have been an important part of the UML language.
There has not been possible until now to inherit behavior of state machines. As shown in Figure 6
this has now been added to UML in the same way as ordinary inheritance of classes is done. New
state machine types can also be specified using inheritance independently of classes. New behavior
can be added and parts of existing behavior can be redefined as follows:

• States and transitions can be added
• States and state machines can be extended
• Effect actions, that is behavior specified in the transitions, may be replaced
• Targets of transitions can be replaced
• Sub machine states can be redefined adding entry/exit points and replacing the substate

machine.
Examples of these concepts are shown in chapter 6.2.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 13

ATM

acceptCard()
outOfService()
amount()

Behaviour

Statemachine

FlexibleATM

otherAmount()
rejectTransaction()

Behaviour

Statemachine

extension

ATM

acceptCard()
outOfService()
amount()

ATM

acceptCard()
outOfService()
amount()

Behaviour

Statemachine

FlexibleATM

otherAmount()
rejectTransaction()

FlexibleATM

otherAmount()
rejectTransaction()

Behaviour

Statemachine

extension

Figure 6 Specialization by extension

2.6 Interaction diagrams
An important element of specification of systems is modeling of the behavior, especially the
interaction between objects (parts). In complex systems it can be a significant amount of sequences
of wanted and not wanted interactions. The Sequence Diagram (SD) in previous versions of UML
has lacked language constructs to describe interactions in a more manageable and compact model.
This is the motivation behind the significant improvements of the Sequence Diagrams in UML. The
most important improvements are:

• References that can be used to refere to other interactions that increase modularization and
reuse of the interactions.

• Combinations that express alternatives, exceptions, loops etc that makes the diagram more
compact.

• Lifelines may be detailed recursively (Decomposition) enabling an abstraction of the
interaction details.

• Better overview of combinations of interactions enabling high-level interactions where
lifelines and individual messages are hidden.

• Gates that gives connection points between references and their environments.
• Dynamic creation and destruction of lifelines.

Decomposition and diagram references are described below.

2.6.1 References
The Figure 7 shows examples on how to use references in an interaction diagram. The referenced
diagram Authorization is bound to a containing diagram via gates. The gates have no names, which
may make it more difficult to understand the diagram. The gates are bound via the names of the
signals. The interaction diagram shows also a definitions of an CombinedFragment with operator
“opt”, which express a specific option that may happen.

Figure 8 shows the definition of the referenced diagram Authorization. It also specifies a creation
and later a destruction of a lifeline or the part Autorizer.

Open Distributed Systems, Seminar Report - Executable UML

Page 14 Geir Melby

sd GoHomeSetup

ServiceUser ServiceTerminal

SetHome()

SetInvocationTime()

SetTransportPreferences()

opt
ref FindLocation

ServiceBase

ref

Authorization

Code()

OK()

OK()

Figure 7 References and gates

Feil!

sd SB_Authorization

Central

Authorizer
create()

Code()

OKI()

OK()
OnW eb()

Figure 8 Gates and creation / destruction

2.6.2 Decomposition
Figure 9 shows how to describe a decomposition of a lifeline (part). Servicebase refers to an another
interaction diagram named “SB_Authorization” in Figure 8, that shows what happens inside the
part.The signals at border of “SB_Authorization” are the same as the signals that are connected to the
lifeline ServiceBase in Figure 9.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 15

sd Authorization

ServiceUser ServiceTerminal____ServiceBase_____

Code()

OK()

OnWeb()

OK()

ref SB_Authorization

Figure 9 Decomposition of lifelines

Open Distributed Systems, Seminar Report - Executable UML

Page 16 Geir Melby

3 ServiceFrame

3.1 ServiceFrame overview
ServiceFrame provides a set of domain given actors, with generic attributes and behaviour. Services
are applications of ServiceFrame that are defined by specializing and instantiating the Actors and by
defining and deploying Roles.

This chapter will describe those parts of the ServiceFrame that is used in the modeling of the chat
application. A description of the ServiceFrame can be found in [SERVICEFRAME].

3.1.1 ServiceFrame
ServiceFrame provides architectural support for service creation, service deployment and service
execution. Services are realized by ServiceFrame applications that are defined by specializing and
instantiating framework classes. The idea is that service developers shall be able to concentrate on
modeling the service functionality and be relieved from considering technicalities that are not service
specific.

To this end ServiceFrame provides architectural support for modeling and for implementation in
terms of domain concepts. In addition it has mechanisms that support incremental development and
deployment of services.

The architectural support is provided in three layers, as illustrated in Figure 10

ServiceFrame itself is an application of ActorFrame, which is a generic application framework
supporting Actors and Roles. Both are implemented in Java using JavaFrame [JavaFrame], which
provide support for state machines and asynchronous communication according to UML2.0 running
on a Java Virtual Machine.

Application:
MyUserAgent, MyTerminalAgent,
MyCommunityAgent,…. My Roles

ServiceFrame:
UserAgents, TerminalAgents, CommunityAgents,
ApplicationActors, ….

ActoFrame:
Actors, Roles, Plays, Patterns, ….

JavaFrame:
CompositeObjects, StateMachines, Mediators,
CompositeStates, Asynchronous communication,

Java VM

Provides Application
domain concepts

Provides Role modeling
concepts

Provides UML2.0
concepts

Figure 10 ServiceFrame layers

3.1.2 ActorFrame
The Actor illustrated in Figure 11, is the core concept of ActorFrame. An Actor is an object having a
state machine and an optional inner structure of Actors. Some of these inner Actors are static, having

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 17

the same lifetime as the enclosing Actor, and others are dynamically created and deleted during the
lifetime of the enclosing Actor. The state machine of an Actor will behave according to generic actor
behavior, common to all actors, and a Role type, which is bound when the Actor is instantiated. If
the Actor shall play several Roles, this is accomplished by creating several inner Actors each playing
one of the desired roles.

Actor
uid: Sting

Role
CS

innerActor[*]:
Actor

In
Port

Out
Port

:ActorSM

Figure 11 The Actor and the dynamic Actor context

Communication between the Actor and its environment takes place via an Inport and an Outport.
Internal communication among the inner actors is also routed via the ports.

The Actor has a generic behavior, inherited from the base Actor type, that provides management
functionality. It manages the inner structure of Actors and the Roles they play. It knows the available
Roles and the rules for Role invocation. The generic behavior handles role requests as described in
Figure 12. It will either deny the request or invoke an Actor to play the requested role or an
acceptable alternative role. The generic behavior also has the capability to add and remove roles, and
to perform other Actor management functions.

Requesting:
Actor

Invoked:
Actor

Requested:Actor

1. Request(role, …)

2. Play(role, …)

3. Confirm(role, …)

ActorSM

Figure 12 RoleRequest protocol

3.1.3 ActorFrame protocol
ActorFrame has protocols for role requests and role releases. New roles can be created dynamically
and initiated on requests. The idea is that an Actor can request another Actor initiate new roles
(Actors) to do the requested services. The Sequence Diagram for a role request is shown in Figure
13.

Open Distributed Systems, Seminar Report - Executable UML

Page 18 Geir Melby

A:Actor B:Actor

sd RoleRequest

exception

RoleRequestMsg()

RoleErrorMsg()

TimeOutMsg()

RoleConfirmMsg()

RoleDeniedMsg()

RoleRequestref

C:Actor (B subrole)
Create()

bindActor()

alt Happy
days

alt Role is
denied

optThere are alternative
roles defined for you

initActor()

RoleDeniedMsg()

alt Manager
denies

alt Role
denies

opt create

RolePlay()

alt

treatRolePlay()

TreatRoleConfirm()

Figure 13 RoleRequest pattern

As shown in Figure 14 an actor may request several other actors and several other actors may request
one actor. All actors are running in parallel. An actor may play several roles in parallel. If a
requested role is released from all requestors the requested actor will delete the role. If an actor is
defined but it does not exist, it will be created.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 19

P lay

Actor1 Actor2 Actor3 Actor4 Actor5

RoleRequest

RoleRequest

RoleRequest

RoleRequest

Figure 14 Multiple Roles and actors

The protocol must also be able to handle errors that may occur. It may not be possible to create an
actor if the actor template does not exist or available resource is limited. The requested actors may be
distributed to different machines, so hardware errors must be handled.

3.2 Service specification
The basic feature of the protocol is to allow an actor (requestor) to request another actor to play a
specific role and to allow the actors to interact to perform a service or a play. The protocol includes
also a protocol to release a requested role. This is shown in Figure 15.

A:An ActorType B:Anothe rActorTyp e

RoleRequestref

Service Aref

RoleReleaseref

sd Simple Se rv ice

Figure 15 A simple service

The referenced sequence diagram ServiceA may again include the RoleRequest and the RoleRelease
protocols. In chapter 5 is the chat example described.

3.2.1 ActorFrame behavior
The behavior of an Actor is described in Figure 16 and the composite state Playing is described in
Figure 17. This implementation uses advanced object oriented concepts as inheritance of behavior
and architectural concepts as sub states. The ActorFrame protocol is also implemented with use of
polymorphism.

Open Distributed Systems, Seminar Report - Executable UML

Page 20 Geir Melby

Idle

Pending

Playing

[active = false]

Ro lePlay // ReleaseAllAssociations

RolePendingRo leResume

H*

1

[active = t rue]

Figure 16 Bevaior of Actor

RoleBaseIdle

RoleConfirm / addAssoc,treatRoleConfirm

AssociationError / removeAssoc,treatAssociationError

RoleRequest

[notAllowedToConnect] / SendRoleDenied

[allowedToConnect] / Create/RetrieveRole,SendRolePlay
RolePlay

[cardinality violated] / SendRoleDenied,treatRolePlay

[cardinality not violated] / SendRoleConfirm,treatRolePlay

RoleRelease / removeAssoc,treatRoleRelease

[not empty context]

[empty context]

1
RoleBaseIdle

RoleConfirm / addAssoc,treatRoleConfirm

AssociationError / removeAssoc,treatAssociationError

RoleRequest

[notAllowedToConnect] / SendRoleDenied

[allowedToConnect] / Create/RetrieveRole,SendRolePlay
RolePlay

[cardinality violated] / SendRoleDenied,treatRolePlay

[cardinality not violated] / SendRoleConfirm,treatRolePlay

RoleRelease / removeAssoc,treatRoleRelease

[not empty context]

[empty context]

1

Figure 17 Playing composite state

3.3 Implementation of new Actors
ServiceFrame is implemented in Java and new Actors are implemented by specialization of generic
Actor classes with behavior as described earlier a shown in Figure 18. An Actor class represents a
complete behavior and instances of Actors may be created without any specialization. It then has all
behavior of a generic Actor that enabling lifecycle management and handling of the RoleRequest
protocol.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 21

MyActorSM

ActorSM
(from actor)

PlayingBaseCS
(from actor)

ActorCS
(f ro m ac tor)

-theActorCS -playing

MyActorCS

Figure 18 New Actors from specialization of ActorFrame classes

Open Distributed Systems, Seminar Report - Executable UML

Page 22 Geir Melby

4 Tool – Tau 2.0
Telelogic has for many years been building Case tools for making executing models mostly for real
time systems. They have supported the ITU languages SDL and MSC enabling designers to build
complete models describing both architectural and behavior aspects of a system. Telelogic is now
one of the active U2 partners that are making proposals for UML2.0.

Telelogic has now released a new generation of its Case tool called Tau 2.0. The tool supports
UML2.0. The tool has support for:

• Designing of UML models - This include both specification of system architecture and
behavior including an action language for specification of transitions and operations.

• Analyzing of UML models - This includes both syntax and semantic checks of the UML
models.

• Automatic code generation – 100% code is generated for the target language C/C++. It also
supports executable UML models with behavioral specifications.

• Dynamic model verification – The UML models can be simulated and the functionality can be
verified through a rich set of debugging trace features.

The version Tau 2.0 does not have support for the whole UML2.0. It has either support for full
generalization / specializations nor has it polymorphism. It has also some features that are not part of
UML as a special data type PID that is used as a references to a state machine. Reason for this, is
probably that the code generator and simulator, is built on an earlier toolset that supported SDL.
This limitations in the tool have led to some problems when comes to the design of the ActorFrame,
which is implemented in Java with advanced object oriented techniques. Comments on this will be
given in chapter 6.1.

However this tool supports the basic idea of this Model Driven Architecture approach.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 23

5 Example of UML model – a chat application
The idea of study was to make an UML model of the ActorFrame described in chapter 3.1.2 and then
to make an application using the ActorFrame framework. But because of lacking of support of full
UML and limitations in the tool, this was not possible.

This chapter will however describe a chat example where part of the ActorFrame protocol is used.
But as the example will show, the seperation of the ActorFrame and the chat example is not clean.
This example also shows the difference between a reuse-oriented approach that ActorFrame supports
and the implementation of this chat example where little of the ActorFrame behavior can be reused.

This chapter describes the chat example with some comments. In chapter 6 this will be followed up
with comments on the use of UML 2.0 concepts. This chapter will also describe the results from a
simulation of the model showing that the model conforms to the specification.

There are two models for the chat application. The first one is a domain model showing the basic
functionality of the chat functionality without showing how the chat application is implemented.
This model is a Platform Independent Model. The other model is a design model or Platform
Specific Model where the model shows how the ActorFrame protocol is used to model the chat
application.

This chapter will describe only parts of the model. A complete listing of the model is given in
Appendix A – Chat Application model.

5.1 Domain model
There is only one use case of this chat example that is Chatting as shown in Figure 19. The domain
model shown in Figure 22, has the following domain concepts:

• ChatService that is a manager of the chat rooms and that gives access to user of the chat
service.

• User that is the user of the chat service.
• Client that represent the device that the user uses to type and read chat text.
• ChatRoom that is modeling a chat room that sends received chat text to clients.

:Us er

cha tting

Figure 19 Chat use case

The ChatService may have many chat rooms and clients connected to a chat room. One client may
only be connected to one chat room. Chat rooms are created dynamically on request from the users.
When no clients are connected to a chat room, the chat room is deleted.

Open Distributed Systems, Seminar Report - Executable UML

Page 24 Geir Melby

U se r

C ha tR oom

C lien t

 interac ts

1

1

 c onnec ted
*

1

C hatS erv ice

*

*

*

 ac c es s To
*

1

Figure 20 Domain model

A typical interaction of the chat service is shown in Figure 21. The message ChatFromClient
contains the input text from a user and the message ChatToClients contains the text that is sent from
aChatRoom to aClient that presents the text to the user.

eva:User music:Chatola:Clienteva:Client

ChatFromClient ()

ChatToClients ()

ChatToClients ()

Text ()

Figure 21 Interaction diagram for chatting

The sequence diagram does not show the RoleRequest and RoleRelease sequences. The use of
ActorFrame protocol messages is not a part of a domain model. They will be included in the design
model (PSM).

5.2 Design model
The design model is the base for the implementation of the application. The design model uses the
basic classes from the domain model, refines these classes with more details, and adds system or
platform specific classes. In this case we will use the ActorFrame protocol to dynamically create and
delete chat rooms. This put requirements on the participating classes or Actors as they are called in
the ActorFrame terminology.

5.2.1 Class model
The design adjusted class model is shown in Figure 22. Active classes (classes that have state
machines) should normally be sub classes of Actor such that they could participate in the
ActorFrame protocol.

In this model the ActorFrame protocol is only partly implemented in the different classes. This
simplification can be done because the Client and Chat classes do not contain other classes and

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 25

therefore these classes do not have to respond to the RoleRequest message. The new class
RoleManager that may contain both instances of the classes Client and Chat, must however respond
to RoleRequest message to be able to create instances of the contained classes.

R o leM anager

roleId:C hars tring
roleType:C hars tring
room s :S tring< C hatR oom s >

 from C hildren toC hildren

C hatR ooms

+ c hatNam e:C hars tring

 c hatR oom s

*

C hat

room Nam e:C hars tring

+ c hatR ef

1

C lient

 c hatR oom

*
m yC lients

1

TheC lients

*

TheC hats

*

C hatS ervice

from Env U sers

toC lients

m yC hatServic e

1

1

Figure 22 Class model

The class model in Figure 22 shows that the RoleManager has a composition relation to Client and
Chat. In UML 2.0 it is introduced a new diagram type that can specify the internal structure of
classes. Figure 23 describes the internal structure of RoleManager. This diagram specifies the
instances with the cardinality on the set and how the different sets are connected. Connectors connect
the ports together and they also specify the direction of and the signals that the connectors may
convey.

The two ports in Figure 23 with a state like symbol connected to it, represent ports to the state
machine of the containing class. For instance from port toManager of the set myChat is connected to
the port fromChildren that belongs to containing class RoleManager. The signal RoleEnd may be
sent from myChat to RoleManager on connector c4. In the specification of the instance set, the
cardinality can be a fixed number of instances or a range of instances. For example
chatClient:Client[2..4] specifies that two instances of Client is created when an instance of the
containing class is created and two more instances of Client may be created at runtime.

Open Distributed Systems, Seminar Report - Executable UML

Page 26 Geir Melby

from C hildren

myC hat:C hat [*]

p3

from ManagertoManager

toC hildren

c 2

IC hildren

c 2
c 4

R oleE nd

c 4

cha tC lien t:C lien t[*]

from C hat

toManager

c 1

R oleE rror, In it

IManager

c 1

c 3IC lient IC hatc 3

Figure 23 Architectural diagram for class RoleManager

5.2.2 Interaction diagram
A design adjusted interaction diagram of the use case Chat is shown in Figure 24. Here is the
prerequisite that the two instances ola:Client and eva:Client are already created.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 27

m us ic :C hateva:C lient :R oleManagerola:C lient

R oleR eques t (m us ic ,C hat ,ola)
new

R oleP lay (m us ic , ola)

R oleC onfirm (m us ic , m us ic)

C hatFrom C lient (Hei, ola)

C hatToC lients (Hei,ola)

C hatToC lients (Hei ola, eva)

R oleR eleas e (m us ic)

R oleR eleas e (m us ic)

R oleE nd (m us ic)

R oleR eques t (m us ic ,C hat ,eva)

R oleP lay(m us ic , eva)

R oleC onfirm (m us ic ,m us ic)

C hatFrom C lient (Hei o la, eva)

C hatToC lient(Hei ola, eva)

Figure 24 Normal chatting sequence

In this diagram the RoleRequest and RoleRelease patterns from the ActorFrame protocol are shown
in the sequence diagram. These patterns are normally described in separate sequence diagrams where
the protocols are specified with and all exceptions and alternatives. In UML2.0 these diagrams can
be referenced to such that the sequence diagrams become more abstract and easy to understand for
application designers. The sequence diagram in Figure 25 is the same as shown in Figure 21, but
now is the ActorFrame protocol only referenced to in the diagram.

Open Distributed Systems, Seminar Report - Executable UML

Page 28 Geir Melby

m us ic :C hat:R oleManagereva:C lientola:C lient

ref

R oleR eques t (ola)
new

C hatFrom C lient(Hei, o la)

C hatToC lients (Hei, ola)

ref
R olereques t (eva)

C hatFrom C lient (Hei ola, eva)

C hatToC lients (Hei ola, eva)

C hatToC lients (Hei ola, eva)

ref
R oleR eleas e (ola)

ref
R oleR eleas e(eva)

Figure 25 Interaction diagram with use of references

5.2.3 Classes with architecture and behavior diagrams

5.2.3.1 ChatService

The ChatService class contains one Geir:Users and one chatManager:RoleManager as shown in
Figure 26. Geir:Users has a state machine that sends at creation time signals of type StartClient to
chatManager. The chatManager then creates clients and initiate the clients with names.

cha tM anager:R o leM anager[1]
 from C hildren

toC hildren
G e ir:U sers [1]

toC lients

c 1
S tartC lient

c 1

Figure 26 ChatService

5.2.3.2 Class RoleManager

The internal structure of RoleManager is shown in Figure 24. It contains a Client set that represents
interaction point with the users of the chat service. A chatClient:Client, makes a RoleRequest to its

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 29

containing RoleManager for a chat role. The chatManager creates then an instance of Chat if not the
chat room already exists. This sequence is shown in the sequence diagram in Figure 24 and Figure
25.

Part of the behavior of RoleManager is shown in Figure 27. The state chart diagram describes the
transition when RoleRequest signal is received in state Running . This diagram shows both a new
graphical representation of actions in UML and the textual representation of the action semantics
defined in UML. Upon the reception of the signal RoleRequest the actual parameters of the signal
roleId, roleType and client are updated with information contained in the signal. The next symbol is
a decision where the variable roleType is tested against the guard “chat”. In this case this is the chat
role that the client requested. If the test failed, the “else” guard is selected.

The task symbol after the guard “chat” contains actions written in the syntax of the action language
that this tool support. The textual syntax of this language is tool specific, but it may be transformed
to a representation in XMI that is part of UML standard. The textual syntax is very much like C#,
C++ and Java. It is also possible to use this action language to specify a complete state machine.

After the task symbol it comes an action of type signal output. At last the transition ends in the state
Running. After the output action of RoleError signal the transition ends in a circle with an H. This
is a shortcut for writing the state name of the origin of this transition.

It may however be use to comment on the actions circled in red in Figure 27. The statement marked
with a circle in red in Figure 27, “chat = new Chat” creates a new instance of class Chat including
initialization of its internal behavior. The variable chat is a reference to the new instance and the
reference can be send as a parameter of signal to another state machine. This is exactly what happens
in the RoleRequest sequence when aChat receives the RolePlay signal and it sends a RoleConfirm
signal to requestor by using the “to reference” clause in the output action.

The other circle contains the statement “TheChats.append(chat)”. The variable TheChats is the
assosiation end named TheChat of the composition association from RoleManager to Chat shown
the class model in Figure 22. The variable TheChat may contain zero or more references depending
of how many instances of Chat has been created. Rest of the actions should be easy to understand.

Open Distributed Systems, Seminar Report - Executable UML

Page 30 Geir Melby

R unning

R oleR eques t(roleId,ro leType, c lient)

Chat chat;
Client client;
Charstring clientName;
Charstring roomName;

ro leType

"c hat" e ls e

Client cl;
ChatRooms cr;
Integer noOfChildren;
noOfChildren = rooms.length();
Boolean found = false;
Charstring name;
chat = NULL;
for (Integer i = 1;
 i<= noOfChildren;i=i+1) {
 cr = rooms[i];
 name = cr.chatName;
 if (name == roleId) {
 found = true;
 chat = cr.chatRef;
 }
}
if (found == false) {
 chat = new Chat;
 cr = new ChatRooms;
 cr.chatName = roleId;
 cr.chatRef = chat;
 rooms.append(cr);
 TheChats.append(chat);
}

R oleP lay(ro leId, c lient) to c hat

R unning

R oleE rror(roleId,1)

Figure 27 Behavior of class RoleManager

5.2.3.3 Class Client

The behavior of Client is shown in Figure 28. The Init signal is used to initiate the class variables
with values as name of the user (clientName), the id of the requested role (roleId) and the text the
user has typed (startText). An alternative way to initiate the variables of this class is to make a
constructor of the class with parameters. When the instance is created the new operator is called with
actual parameters. The cross symbol circled with red at the end of the diagram, means that this
instance is destructed.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 31

R oleR eques t(ro leId,"c hat",s elf)

W aitForC onfirm

R oleC onfirm (roleId,c hatR oom)

W aitForC hatMes s age

C hatToC lients (c hatText, nam e)

i = i + 1;

i> 2

fals e true

W aitForC hatMes s age

R oleR eleas e(s elf) to c hatR oom

W aitForLas tMes s age

C hatToC lients (c hatText, nam e)

Idle

Init(c lientNam e,roleId,s tartText)

C hatF rom C lient(s tartText, c lientNam e) to c hatR oom

C hatFrom C lient(s tartText, c lientNam e) to c hatR oom

Charstring chatText;
Charstring roleId;
Charstring name;
Integer i=1;
Integer errNumber;
Charstring clientName;
Charstring startText;

Figure 28 Behavior of class Client

5.2.3.4 Class Chat

The behavior diagram for the Chat in Figure 29, shows a transition where signals to all instances of
Client are send. References to the clients are stored in the variable myClients. There is several ways
to specify the receiving state machine:

• By reference - that is the way it is done her in this transition.
• By ports – where the port is specified to carry the actual signal.

Open Distributed Systems, Seminar Report - Executable UML

Page 32 Geir Melby

• By connector – where the connector can carry the signal in the right direction.

W aitForChat

ChatFrom Client(chatText, c lientNam e)

// Send to all clients that are listening to this room
Integer j;
noClients = myClients.length();
for (j=1; j<=noClients; j=j+1) {
 client = myClients[j];
 output ChatToClients(chatText, clientName) to client;
}

W aitForChat

Figure 29 Behavior of class Chat

In Figure 30 behavior is specified for aClient to send a RoleRelease signal to Chat. Chat checks if
more clients are associated with this chat room. If none, it sends a PlayEnd signal to the containing
RoleManager.

The state symbol is named with a star and in parenthesis the state Idle. This is a shortcut for
specifying that this state machine may receive the signal RoleRelease in all defined states except the
Idle state. The history symbol at the end of the transition means that the next state is the same state as
it received the signal. This mechanism is powerful for specifying of transitions that may happen in
more than one state. It is also possible to specify a group of states in the state symbol.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 33

RoleRelease(c lient)

* (Idle)

Client c;
Boolean found;
Integer el;
Integer l;
noClients = myClients.length();
for (l = noClients; l > 0; l = l -1) {
 c = myClients[l];
 if (c == client) found = true;
 el = l;
}

if (found == true) myClients.remove(el);
noClients = myClients.length();

noClients > 0

true false

RoleEnd(room Nam e)

Figure 30 RoleRelease in class Chat

5.2.4 Validation of the model
This model may be simulated for validation of functionality of the model conforms to the
specification of chat. The sequence diagram in Figure 31 shows the initial startup when Geir:Users
sends two StartClient signals to chatManager. The chatManager then creates two Clients which each
makes a RoleRequest to RoleManager for the same chat room. The rest of the trace is shown in the
appendix B where it can be verified that after three rounds with chatting the Clients and the Chat is
deleted.

Open Distributed Systems, Seminar Report - Executable UML

Page 34 Geir Melby

Figure 31 Trace of initiating of chatting

It is possible to test a UML model with the validation tool in Tau in the same way as ordinary
Integrated Development Environments have. A typical window is shown in Figure 32. It is possible
to make single steps, trace to breakpoints, inspect values of variables, states, status of state machine
etc. A textual output of the execution is also available as shown in Figure 33.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 35

Open Distributed Systems, Seminar Report - Executable UML

Page 36 Geir Melby

Figure 32 Debugging in the Model Validator

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 37

Figure 33 Textual trace of execution

Open Distributed Systems, Seminar Report - Executable UML

Page 38 Geir Melby

6 Experiences
The first attempt to make a UML model consisting of ActorFrame classes and to make a chat
application by extending ActorFrame classes, failed. The reason for that is partly

• Limitations in the tool
• Limitations of the proposed UML2.0 standard
• Lack of knowledge of both the language and the tool

The first two reasons are commented below. The intention of study is to look at concepts in UML2.0
and not eventually additional concepts that the tool supports.

6.1 UML2.0 support in the tool
As mentions in chapter 4, Tau is partly built on a earlier toolset that supported mainly the SDL
language. SDL has defined many of the language concepts that UML has lacked. SDL has in fact
heavily influenced the specification of UML 2.0 especially the architectural and structural concepts
(ports, parts, interactions, behavior specialization).

The tool supports also some concepts that are not part of UML 2.0 as e.g. a reference data type and
predefined operations to get sender of the signal, parent and offsprings of a state machine. Especially
the lack of a data type in UML to keep references to state machines that is not bound to a special
class, is a serious limitation when it comes to make general classes of frameworks. For instance in
ActorFrame protocol the sender of the RoleRequest signal have to be included in signal as a
parameter. In UML2.0 this is not possible because the parameter containing the reference to sender
of the signal has to be of the sender class. The data type Pid in SDL can have references to state
machine of different classes.

But the tool did not support important concepts that are part of UML as (sjekk dette)

• Specialization / generalization of signals that caused that it is not possible to specify a general
signal that all ActorFrame signal inherits. This led to the problem of not be able to make a
general Actor class with ports that conveys signal of the generic type. The problem with the
port could have been solved if generalization of ports had been supported.

• Polymorphism is an important technique when it comes to make general frameworks that may
be reused by extended and redefining of the general classes of the framework. This is used in
implementation of ActorFrame to obtain the general management behavior that all subtypes of
Actor inherit. The Tau tool does not support polymorphism. This reduces the possibility to
make general frameworks.

6.2 UML 2.0 standard
The changes in UML2.0 from previous versions have increased the power and expressiveness of the
language significantly. It has many of the concepts needed to model complex systems. Use of
architectural diagrams to specify internal structure of classes seems to be a better way to describe
hierarchies than using composite associations. The port concept with internal operations and
behavior makes UML2.0 to a better language for describing interfaces of classes and components.

Specialization of behavior was not used in the chat application. The reason for that is that there were
not many similarities between the different classes when it was not possible to model a general
ActorFrame behavior of Actor. But inheritance of behavior is achieved by normal generalization as
shown in Figure 34. The behavior of the Actor class is shown in Figure 35.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 39

Client

Chat

:: Actor::Actor

toActo

ChatServic

Figure 34 Class inheritance

The subclasses may extend behavior of Actor Figure 35 as shown in Figure 36. The RoleBaseIdle
state is extended with new transitions and the state machine is extended with new states. So the
Client contains the behavior of Actor extended with behavior specified in Client. This is obviously a
more efficient way of structuring the model. All active classes that are sub classes of Actor inherit
the behavior of Actor that is ActorFrame functionality as earlier presented in chapter 3.1.2.

Open Distributed Systems, Seminar Report - Executable UML

Page 40 Geir Melby

Idle

RolePlay(myAddress,requestorId,myParent)

transIdleRolePlay();

Playing

RolePending

Pending

RoleResume

Playing

RoleRequest(actorId,actorType,play)

transStarRoleRequest();

-

* (Idle,Pending)

RoleConfirm(senderId)

transStarRoleConfirm();

-

Figure 35 Behavior of class Actor

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 41

StartChattin

RoleBaseIdl

Wait

Play play = new Play("chatplay);
output RoleReques("musikk,"chat",play);

TreatRoleConfir(aa)

ChatFromClie(el)

el = new ChatElemen("Bare tull, men);
senderPi = aa . actorPi;

Chatin

ChatToClient(el)

ChatFromClie(el)

-

Figure 36 Behavior of subclass Client

Other problems in UML2.0 that still remains to be solved, are that received signals are not available
after the trigging of the transition. This makes it more complicated to model for instance the
functionality of a router. All signals have to be defined in the state machine, to enable a forwarding
of the signal. If the signal has been available in the transition, it would have been possible to define a
rather generic router that receives for instance Actor signals, inspect the generic part of the signal
and then forwards the same signal. It is at moment not clear that if this is possible or not in UML.

6.3 Tool
The Tau tool from Telelogic was just released when the study started in September. There was no
problem with the installation and it was easy to follow the tutorial to make the first model. The tool
is very fast, has a good design and it is supported with many useful trace and debugging possibilities.
It is possible to a make a UML model, analyze it and then do model verifying.

However did the study expose some weaknesses in the tool as

• Restrictions in the action languages in how to use the language. Generally it was most safe
only to write one statement on each line.

Open Distributed Systems, Seminar Report - Executable UML

Page 42 Geir Melby

• Features that was allowed to write in model, but that was not supported behind the scene,
created some trouble. For instance it was allowed to make generalization hierarchies of signals,
but it was not supported in model verification.

• Though the tool has an excellent help facility, the relevant content was difficult to find. There
were to many hits and many of them were connected to the code generator that the user
normally does not work with.

• Missing error explanations that made it difficult to find errors. For instance gave the tools
many runtime errors of type “memory exception” without an explanation of where these errors
where located. These errors also some times corrupted the application model and an earlier
version had to be loaded which caused loss of data.

6.4 MDA approach
Although the book [1] was read as part of the study it did not give very much new to the concept of
executing models. However has this study shown that it is possible to make executable models in
UML, also where the new concepts in UML2.0 were used. In overall has this study followed the
main steps in the book. But the book did not cover UML2.0, which has been the focus of this study.

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 43

7 Conclusions
This study has done an evaluation of the UML2.0 language as it was in September 2002. The
language has been significantly improved by new concepts that supports modeling of large and
complex real time systems as most of telecom systems are. Examples of improvements are better
concepts for architecture of classes and structuring of behavior.

This study has used many of the new concepts in modeling the chat application. A model of
ActorFrame was partly made, but the study got problems when it tried to model ActorFrame using
the same advanced concepts that were used in the Java implementation. The reason form this was
partly that the tool did not support all concepts in UML2.0. An example was that the tool did not
support generalization / specialization of signals and polymorphism. The study has also shown that
UML needs a better support for referencing to state machines as a data type that could contain
references to state machines.

However the study also did show that it was possible to make executable UML models with behavior
specification and that the models may be verified through simulation.

Earlier experiences with other specification languages have however shown that it is complicated to
make complete models of complex systems that are so complete that it is possible to be verified,
analyzed, and code generation to target platforms. But this is for sure possible, but it will take some
time to the enough experiences with both the language and the tools to be in large scale able to
achieve that.

The future may be bright but have patiance!

Open Distributed Systems, Seminar Report - Executable UML

Page 44 Geir Melby

8 References

1. Stephen J. Mellor, Marc J. Balcer: Executable UML – Model-Driven Architecture:
Addison-Wesley

2. Unified Modeling Language: Superstructure: version 2; Updated submission to OMG
RFP ad/00-09-01; http://cgi.omg.org/cgi-bin/doc?ad/02-09-02

3. Unified Modeling Language: Infrastructure: version 2: Updated submission to OMG
RFP ad/00-09-01; http://cgi.omg.org/cgi-bin/doc?ad/02-09-01

4. Rolv Bræk, Knut Eilif Husa, Geir Melby: SeriviceFrame; Whitepaper; Ericsson

5. SDL, Z-100 2000, ITU

6. MSC, Z-120 2000, ITU

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 45

Open Distributed Systems, Seminar Report - Executable UML

Page 46 Geir Melby

Appendix A – Chat Application model

8.1 Class model

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 47

8.2 Signals definition

Open Distributed Systems, Seminar Report - Executable UML

Page 48 Geir Melby

8.3 RoleManager - RoleRequest

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 49

8.4 RoleManager - RoleEnd

Open Distributed Systems, Seminar Report - Executable UML

Page 50 Geir Melby

8.5 Client

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 51

8.6 Class Chat - RolePlay

Open Distributed Systems, Seminar Report - Executable UML

Page 52 Geir Melby

8.7 Class Chat - RoleRelease

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 53

8.8 Class Client

Open Distributed Systems, Seminar Report - Executable UML

Page 54 Geir Melby

8.9 Class ChatService – Internal structure

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 55

8.10 Class Users

Open Distributed Systems, Seminar Report - Executable UML

Page 56 Geir Melby

8.11 Sequence diagram Chatting

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 57

8.12 Sequence diagram Chatting with references

Open Distributed Systems, Seminar Report - Executable UML

Page 58 Geir Melby

8.13 Domain model

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 59

8.14 Sequence diagram chatting

Open Distributed Systems, Seminar Report - Executable UML

Page 60 Geir Melby

Appendix B – Trace of chatting

Report - Executable UML Open Distributed Systems, Seminar

Geir Melby Page 61

