Foundations and Applications of Graph

Transformation
An introduction from a software engineering perspective

Luciano Baresi Pglit_ecnico
Politecnico di Milano di Milano

Reiko Heckel L(‘ Universitat
University of Paderborn L Paderborn

Motivation:
Programming By Example

StageCast (www.stagecast.com): a visual programming
environment for kids (from 8 years on), based on
= behavioural rules associated to graphical objects
= visual pattern matching

= simple internal control structures (priority, sequence, non-
determinism, ...)

= external keybord control

< Rule-based behaviour modelling is a natural and
intuitive paradigm!

Example: A simple PacMan game; concrete (StageCast)
vs. abstract (graph-based) presentation.

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

States of the PacMan Game:
Graph-Based Presentation

\
:Field)
-PacMan instance graph
(represents a

marbles=3
| :Field |<—>| :Field |<—>| :Field > single state;
I \-M bl abstracts from
:Field e spatial layout)
: J

PacMan ty, h
i pe grap.
marbles:in (specifies legal

instance graphs

> state space)
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

Rules of the PacMan Game:
Graph-Based Presentation

| fL:Field [+—{ f2:Field | | fL:Field +—{ f2:Field |

pm:PacMan | [, pm:PacMan
marbles=m collect marbles=m+1

! T
| f1:Field [+—] f2:Field | | f1:Field |«—{ f2:Field |

| g:Ghost | | :PacMan | kill g:Ghost
G
| f1:Field +—] f2:Field | | f1:Field |+ f2:Field |

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

Qutline

% Motivations

» Foundations

»* Sample applications
% Tool support

% Conclusions

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

L/

1- Motivations

Why you are here.

DB_TIME PT ET

Visual Modeling Techniques

Petri nets \‘?‘/
y __[RVERNT
— 4

Continuous
Media
A

Function Block
on_THR Diagrams

Discrete
Media
A

Structured Analysis

| Audio " Animation

Video

PT ET

TON
IN IN Q
_I\ D

SR
OFF_TMR

st all— ouT |Graphlcs|| Image " Text |
TON R

ool Class Diagrams (UML)

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

Separation of Concerns

x Complexity requires abstractions. Models
allow to focus separately on:

= System parts < Problem
+ class, component, subsystem domain

= aspects
+ data, function, distribution, security @

= user views
+ clerk, customer, system administrator 1

= abstraction levels Model
+ requirements, design, ...
+ Black- vs. white-box @

® Development processes
= human-oriented (= visual)
= incomplete and redundant Implementation

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

Integration and Consistency

3

O
capture
Viewpoint A Viewpoint B
1]

— ensure
Model A c<_>on5|stency Model B
«

Make sure there is
an implementation
satistying all
requirements !

~integrate &
* transform
System

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

What do we need?

% Concepts, theory and tools
like for textual programming
languages
scanning and layout = syntax
parsing operational . semant|cs.
semantics . denotqtlonal
+ operationa
? = transformation / refinement
= verification
denotational semantic =i
semantics feedback % GT at two levels

. ruled—bl?_sed behaviour
)) modelling
Semant1f: domainy. = meta modelling
Programming lansiase

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 10

N

2- Foundations of
Graph Transformation

How it works.

Qutline

% Roots and Sources
= Where it all came from and who invented it.
% A Basic Formalism
= Light-weight presentation of a categorical approach.
% Variations and Extensions
= Syntactic and semantic alternatives, and advanced features.
% Relation with Classic Rewriting Techniques
= Inspiration for application and theory.

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 12

Roots and Sources

Chomsky Term Petri
Grammars Rewriting Nets

l 1]

Graph Transformation and Graph Grammars
(Web grammars: Pfaltz, Rosenfeld 68; Montanari 69)
(Grammars for partial orders: Schneider 70)
(A-graph reduction: Wadsworth 71)

Node label-controlled Algebraic double-
graph grammars pushout approach
[NLC] [DPQO]

Monadic 2nd Order PROgrammed Graph

Logic of Graphs REwriting Systems
[MSO] [PROGRES]
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 13

A Basic Approach:
Typed Graphs

% Graphs as algebraic structures
G =(V, E src tar) with sr¢ tar: E2 V
% Graph homomorphism as pair of mappings
h=(h,:V,>V,h-:E, 2 E):G, 2 G,
preserving the graph structure
% Typed graphs (cf. PacMan example)
= fixed type graph 7G
= instance graphs (G, g : G 2 7G) typed over 7G
= UML-like notation x : ¢ for x in G with g(x) = ¢

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 14

Rules

p: L 2> Rwith L n R well-defined, in different
presentations
= like above (cf. PacMan example)
= With L n Rexplicit [DPO]: L € K2 R

= with L, Rintegrated [Fujaba]: L U R and marking
+ L - R {destroyed}

* R-L {new}
movern: [pmpacian
{destroyed} {new}
| f1:Field [« f2:Field |
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 15
Transformation:
Operational Intuition
Tﬁ ________ | R { _________________ |
: pm:PacMan : 7, : pm:PacMan ||
| |
' T N !
| [t | e | | fuied |- roFed] |
Ilo o
r _________________ r _________________
fl:Field = | pm:PacMan G H || 1:Field pm:PacMan

| ! | !
| ! | !
! marbles=3 || ! marbles=3 ||
1 B |
. .

: I : l

1. selectrulep.:L 2R, occurrence o, . L 2 G
2. remove from G the occurrence of L\ R
3. add to result an occurrence of R\ L

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 16

Transformation:
Declarative Formalization

Transformation G 2,,) H with p: L 2 R
= occurrence 0. LUR>GU H
= OL\R)=G\HandoR\L)= H\G
That is, a conservative approach:

= don't delete if this causes ,dangling edges"
> invertible transformations, no side-effects

E.g.: violation of > |
danglingedge TR

I
condition [DPO] T T
{EXSEL x

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 17

Variants and Extensions:
Graphs

Graphs as relational structures: G = (V, E)with Ec VxV
= no parallel edges; special case of algebraic variant
Undirected graphs
= directed graphs with symmetric edges
Hyper graphs: edges have lists of source (and target) vertices
= encoding as bipartite graphs
Labelled graphs: Vertices and edges labelled over an alphabet L:
s G=(WE, Mwith EcVxLxV; lv:V>L resp.
s G=((WEsrctan lv,le) with...; v: V2L le:E>L
Attributed grahps: labelled over an abstract data type, e.g.

type level: pacMan instance level: | ym.pacMan

marbles : int marbles = 3

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 18

Variants and Extensions:
Rules and Transformations

% context-free rules: one vertice or edge in L

% dealing with unknown context

= node-label controlled embedding and set-nodes
[NLC, PROGRES]

= explicit (negative) context conditions
@—»{ frfield o :Field || 7 [fL:Field |« :Field

(turns f1 into a trap by reversing all outgoing edges
to Field vertices, but only if there is no Ghost)

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 19

Chomsky Grammars:
Rewriting of Strings

Production A = aAb as (context-free) graph grammar
production

5] o> B2 e

Theory of graph grammars as formal language theory
for more-dimensional structures
= hierarchies of language classes and grammars
decidability and complexity results
parsing algorithms
L-system-like parallel graph grammars

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 20

Petri Nets:
Rewriting of Multisets

A PT net transition as graph transformation rule

Theory of concurrency of graph transformation
= independence, causality, and conflicts
= concurrent shift - equivalence of transformations sequences
= processes and unfoldings
= event structure semantics

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 21

Term Rewriting:
Rewriting of Trees or DAGs

TR Rule f(x) > g(x, f0)) f
as DAG rewrite rulé ~ ;
—

Theory of term graph rewriting
= soundness and completeness w.r.t. TR
= termination, confluence and critical pairs
= implementation of functional languages
= semantics of process (e.g., pi-, ambient-) calculi

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 22

Exercise 1

Improving Pacman.

Be a (slightly) more clever player!

Extend the movePM rule so that Pacman does
not move next to a Ghost.

a >
| fL:Field [+ f2:Field | | fL:Field [+ f2:Field |

f2:Field

Solution: a negative application condition.

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

24

Give Pacman another chance

Let Pacman have a counter for his lives.

PacMan Solution:
marbles:int add an attribute.
lives:int

Refine the rule &i/l/ to remove Pacman only if he
has run out of lives. Otherwise decrease
the counter and remove the Ghost.

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 25

Refine rule &il/

| [cGhos]| [Faten] [aiGhost|
a >
| fL:Field | f2:Field | | fL:Field |« f2:Field |
T
I:_PaC# Solution: match attribute value.
ives = 0
| g:Ghost | | :PacMan | kill g:Ghost
a >
| f1:Field +—] f2:Field | N>0 | f1:Field le—{ f2:Field |
T
:PacMan :PacMan
lives = n Solution: an attribute lives = n-1

application condition.

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 26

3- Applications of
Graph Transformation

What it is all good for
(except video games).

Qutline

Concretersynitax . .
% As semantic domain for

scanning and@ § layout behavior modeling

parsing operational capturing and analyzing

semantics
Abstiractisyntax

functional requirements
‘ 3 = reconfiguration, mobility,
and evolution of soft-

feedback architectures
»* As a meta language for

Semantic domainy/ visual modeling
Prosiammingilansiase techniques

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 28

semantics

denotational@ § semantic and hardware

Motivation: Software Development as
Integratlon of Views

Req A Req. B

capture

User View A User View B

ensu re
consistency

Make sure there is transform

an implementation
satisfying all
requirements /

System

1. Aspects of requirements models

2. Conflicts between functional requirements
3. Theory and tool support

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 29

Aspects of Requirements Models

~,1 Model A | Model B

1. Static domain model: Agree on vocabulary first !
- class and object diagrams

2. Business process model: Which actions are performed
in which order ?

- use case description in natural language, activity or sequence
diagrams, etc.

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 30

Structure: Class and Object Diagrams

value

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

amount

4 :Customer :Bill
. cash = 50 total = 40
v formal, e.g., attributed
graphs at the type and
instance level :Cart :Item :Ttem
value = 30 value = 10
v established techniques | :Cash Box [°WT_
for view integration amount = 1000 _——] _:Shop
J typing
0..
Customer 1 Bill 41|Sh—op|
cash total o 0.1 1 1
0.1 0.1] &
0.1 g 1
| cat g7 —{item [~o3 Rack | |CashBox

31

Behaviour: Use Case Description by

~Structured Text

Shop

%/ / ’%
¥ based on vocabulary ,domer |, Q’ Clerk

of integrated domain

model
xR
xR
xR
®
®
¥ no way to
tell if views are
consistent

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

\

VA <<refine>> \

take shopping cart
select items from rack
take items out of cart
pay required amount
collect items

®

¥
create empty bill for
new customer

take items out of
customer’s cart

add them to the bill
collect payment

pack and give items to
customer

32

Aspects of Requirements Models

-, Model A | Model B

v" Static domain model: Agree on vocabulary first !
- class and object diagrams

v Business process model: Which actions are performed
in which order ?

- use case description in natural language, activity or sequence
diagrams, etc.

3. Functional model: What happens if an action is
performed ?
- pre-/post conditions as logic constraints

- transformation rules on object diagrams
(Fusion, Catalysis, Fujaba, formally: graph transformations)

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 33

Function: Transformation Rules on
Object Diagrams

:Customer :Bill :Customer :Bill
cash=zy total=x € ustomer > cash=y-x total=x
| [\oaybit /) |
:Cart ltem
:Shop
conflicting
actions
:Shop :CashBox :Shop :CashBox
amount =y amount = y+x
:Bill :Bill
total = x total = x dtem

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 34

Conflicts Between Functional

Requirements
B :Customer :Bill)
cash = 50 total = 10
Customer T Clerk
customer " e
updates CashBox | [both delete
cash = 1000 . owns /ink

pay bill clerk updates close bill

: amount
:Customer ¥/ :Bill % :Customer | Bl |
cash = 40 total = 10 cash = 50 total 10
own I

:Cart :Item Item
[value = 10 | l
:Cash Box :Cash Box
amount :Shop g amount
= 1000 = 1010
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 35

Theory: Independence, Causality and
Conflicts in Graph Transformation

% Alternative stePs are parallel

G
independent if they do not P, D>
disable each other.

Otherwise they are /in confiict. H, H,
% Consecutive steps are ,02\ /D !
sequentially independent if X

they may be swapped without
affecting the result.
Characterization [EPS73]:

Otherwise they are causally Two (alternative or
dependent. consecutive) steps are
Idea: Find potential conflicts and independent iff all
causal dependencies between commonly accessed items
rules by critical pair analysis are in read-access only.

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 36

TooI Support: Critical Pair Analysis wnth AGG

s Rules of Shopping

1 E=E]takecan
(L] smipetciong
[L=E] pangBill
[E=F] crateBill
[E=T] vinood
[E=TE] setemn

10 GashBon
1 anwunamount

T . — -
E@“”'“"’G“"W"“ NS0 vem o i overtaps Lam of somatin gy CF B 7 L of il ovetas Lt of sottioBi ¢2)
[LEE takecant [o e o ags L o suttieHin) of eyl overlaps Left of settiuDil (2)
[L=R] satpctiond ol -
[L=R] pargiin velue=y _____-—~" tolal=x
(L] cratein o ™
[L=R] billzeod
LT gettleBin | smp mshuox
amﬂull amoeunt
-
a
Cuslamae g Left of
cashzcash = aft of payill overlags Ledt of settieGill (1)

<) |
.'nmu- Computing overlapping graphs of rules: pay@l and sstiege - fnished
Al

ec———————— Hl7
Usage Scenario
A 1. 2.
—> UML —>| Analysis :I 3
Modeller «——> | CASE Tool | ¢«——| Tool '
5. 4,
1. input model to CASE tool
2. import model by analysis tool
3. analyze model for conflicts
4. back annotate models with conflicts
5. interprete and improve models
Domain expert: “buy items Shop
and sell items should
not be in confiict” <<disables>¢
Modeller: ‘inconsistency / /
between views” Customer Clerk
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 38

Another Interpretation:

Graphs as Architectures

Banking &
System

Internet

SmartCard

1. Type vs. instance level
2. Generation and reconfiguration
3. Integration with functional requirements

» static and dynamic
% consistency issues

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 39

Architecture:
Type and Instance Graphs

:BankingServer
% components
% ports

® connectors
:SmartCard :BankingServer

N
% individual configuration
- instance graph CashBox|

% architectural style =
class of configurations

- type graph

SmartCard BankingServer

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 40

Reconfiguration:
Typed Graph Transformation

newCard()

() @ <> |.SmartCard| = Elementary operations

= creating (destroying) new
component instances

[it:1Pint | = establishing (removing)
connect(i1,i2) connectors
& ;
% Complex reconfigurations
[2:IPint

» local (CF) rules with
synchronization

= global (non-CF) rules

- insert(r,c) Also: architectural style as
&= graph grammar
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 41

Development Problem: Implement
functionality on a given architecture

1 1
Functional System
Requirements Architecture
A Y k4
~ N . 7
~ ~ P 7
<<refine> >‘\\ . “<<extend>>

7

Vv

Y Deployment

» static: deploy classes at components and objects at
component instances

-> define a typed relation
% dynamic: distribute functionality
- decompose global operations
- add communication and reconfiguration

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 42

Functional Requirements

src 1| Account
Transfer b to Bill
Payment of Bills —— el 1 total
k dest 1| balance
% static: type graph -
as
[1
x 2
dynamic typed graph Sic] ety
transformation rule
name

:Account has [~ . :Account has [T
payBill(b) | ratance - b1-a

balance = b1

pays
:Account to b:Bill :Account
balance = b2 I= balance = b2+a

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 43

Static Integration:
Instance and Type Level

:CashBox [cBPm] -:BankingServer

© A2:Account

:SmartCard -:BankingServer

C:Client i A1:Account

location of objects at

component instances typing
con/stra;'ned by type
eve,
= - - . : — <_<£upports>> P
S SeSSERROSI S (T T <<supports>>,
<<supports>>» === T ==__N_ _-" < T==2_0
SmartCard CashBox BankingServer

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 44

Dynamic Integration: Three views

Rules for
= computation: what happens inside components
= reconfiguration: how the architecture is transformed
= interaction: how components communicate

:SmartCard :CashBox :BankingServer :BankingServer
authorizeTransfer(c)
>| orderTransfer(t)
ackTransfer(t)
executeTransfer(t)
(__________
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 45

Implementing payBill(B)

. insert(R,SC); authorize(C); eject(R,SC);
2. createTransfer(B,T);
3. connect(CB,BS1); orderTransfer(T); ackTransfer(T);
disconnect(CB,BS1);
4. connect(BS1,BS2); executeTransfer(T); disconnect(BS1,BS2)

.CashBox _'—- :BankingServer
. pays

T:Transfer dost ! dest
- :BankingServer
has
T:Transfer
C:Client = At:Account ¢

has I

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 46

Computation rule:

createTransfer

cb:CashBox

’ :Account }@{ :Client ‘

total = a

pays

cb.create
Transfer(b,t)

& D

cb:CashBox

src ﬁ :Account }E{ Client ‘

t:Transfer
amount = a

% local to CashBox instance

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

47

Computation Rule:

executeTransfer

sz:BankingServer-

a2:Account
balance=b2

dest

Src

bs1:BankingServer

al:Account
balance=b1

t:Transfer

% non-local operation

(bs1,bs2).
executeTransfer(t)

& -

bs2:BankingServer

a2:Account
balance=b2+a

bs1:BankingServer

al:Account
balance=b1-a

% synchronized between two BankingServer instances

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

48

Communication Rule:
orderTransfer

orderTransfer(t)

& -

:CashBox :BankingServer

t:Transfer Sle \a1:Account

:CashBox :BankingServer
1| Src [

’ t:Transfer [| al:Account ‘

| Transfer |

i

% shows effect of communication
= transmission of 7ransfer instance

% abstracts from communication protocol
= sending and reception of messages

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 49

Consistency Problem:
Partial Correctness ?

Do executions of the rule sequence implement the
requirements expressed by the global rule ?

1. Project sequence to the functional view
% hide all communication and reconfiguration rules
% remove all components, connectors, and ports
» identify shared objects
2. Minimize the resulting sequence
x clip off unnecessary context
x skip idle steps
3. Compare reduced sequence s to the original rule r

Thm [embedding]: If r can be embedded into (is
equal to) the derived rule of the sequence s, each
execution of s implements at least (exactly) the
effects specified by r.

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 50

Example: Reduced Sequence Equals Global Rule
createTransfer(b,t) ; executeTransfer(t) = payBill(b)

has has . .
:Account Client :Account Client :Account :Account
— create src src T balance =b1 | gecue | Dalance = b1

% t-Transfer tTransfer Transfer(t)
ey el el émount =a m
oal=a balance = b2 balance = b2+a

2 0 2

:Account has ' :Account has— :Account has)
balance = b1 4{;0“—@ SrT balance = b1 balance = b1-a
create execute
pays Transfer(b,t) | tTransfer Transfer(t)
@ amount = a m
:Account to | b:Bill { :Account :Account
balance=b2 | | total=a dest] palance = b2 balance = b2+a

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 51

Summary

% Specification of changes by means of graph
transformation rules on object structures,

architectures, ...
= formal, yet visual and intuitive
= integrates structural and behavioral aspect

% Relevant graph transformation theory
= independence and local Church-Rosser; critical pair analysis:
detect potential conflicts between views
= embedding of transformation sequences: consistency of
implementation and requirements
-2 theory of concurrency and rewriting

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 52

Exercise 2

Meta modelling.

One formalism — two interpretations:
Integration at the Meta Level

Function Architecture
type 1 ’Componentlnst %’ Component‘

1 1

| DT Y2 hssociationind | Portinst |—2=—{ Port |

2 2 2

1
type — type
Link yP 3 Association ’Connectorlnst %’ Connec;tor‘
/

N

\\ Deployment /,
\ . .
<<extends>>\ Object [<99M ! Pairinst 995/ Componentinst || /<<extends>>
\ Sl

/
\\ type //

1
\ dom : cod /
Class] PairType 3 Component

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 54

Represent as meta model instance!

type level m instance level

diagram: R ckmpportsss diagram: ch:CashBox

Hint: Assume that every meta type has a name attribute.

:Class type :Object
name="Bill” name="p”
dom dom
) type)
PairType Pairlnst
cod cod
:Component type :Componentinst
name=“CashBox” name="cb”
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 55

Meta language

Concrete syntax % as semantic domain for

. @ behaviour modelling
canning and

layout
parsing operational| % as @ meta language for
semantics visual modelling

= syntax definitions:

. . + editors, parsers, ...
denotational semantic . L
= semantics definitions:

semantics feedback . .
+ interpreters, compilers,

y y = syntactic and semantic
semantic domain/ integration of VMTs
Programmingilansiiase + CASE tools

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 56

Running example

Cashbox
(

ejectCard

~
[Rejected

[! clientAccepted]

4
J/ Serving

[clientAccepted]
Transaction Handling)

i

receiveClientData

Authentication
Started

\Operating

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 57

scanning and | t
SyntaX parsing @ §ayou
“

% Concrete syntax
= Describes how graphical elements are represented and their
actual shapes

+ Open, closed lines, and labels are specialized in kinds of lines
and closed shapes

+ Concepts are modeled through spatial relationship graphs

% Abstract syntax

= Describes the sentence by the structure it has according to
the language and fully abstracts away from the visual
representation
+ Sentences (diagrams/models/graphs) are defined by
composing shapes (concrete elements)
+ Sentences are rendered as abstract syntax graphs (close to
OMG metamodels)

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 58

Scanning and parsing “a;‘:i;%;”"@

Abstract; syntax

% User models are scanned to build spatial relationship
graphs and abstract syntax graphs
= The grammar predicates in terms of lines, bubbles, labels,
etc
% Abstract syntax graphs can be parsed to validate that
they represent valid elements of the language
= The grammar predicates in terms of language’s tokens

= It could be used to define allowed steps in syntax-directed
editors

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 59
Example
(Cashbox)
% Concrete syntax :Edge — 1:Label
(Spatial relationships graph) top/left
Idle:Label | ——J :Rectangle |- """ [:Edge
bottom/center
% Abstract syntax :Edge
(Abstract syntax graph)
=55 IdlesState (—=
O | f f source
nly fragments o -
complete diagrams
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 60

Layout § layout

Abstract; syntax

% Abstract syntax graphs can be used also to define automatic
layouts through special-purpose grammars that embody layout
algorithms

= Textual attributes can be used to compute correct positions for
concrete shapes

= Almost all algorithms employ general purpose rules. Subtle
positioning cannot be rendered

® Example (toy)
= The first edge always leaves for the center of the left side
= The second edge from the center of the top side

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 61

Example
(DiaGen)

£ s g et Gt i - From specifications of
ey o e #& o= 8 % abstract and concrete syntax
:_a_.-;u_____w-_-y_,-'_!:T%_ = by graph grammar rules
o F L * free-hand and syntax-_
_| T directed editing operations

F-—_ — | [—ﬂ | = by editing rules
= e ® operational semantics
i L_l' = by animation rules

- DIAGEN generates standalone

editors as Java classes

Live demo

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 62

operational
semantics

s i

/Sema ntics @ §

semantics feedback

% It defines the meaning
of language sentences

»® Semantics can be given in two different ways
= Operational semantics
+ Directly on the abstract syntax graph through another grammar
= Denotational semantics

+ Through a mapping from the abstract syntax to an external
semantic domain

+ In this case the role played by the grammar depends on the
chosen domain

% It depends on what we want to communicate with
the language

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 63

operational
semantics

Operational semantics IE=EER O

% Mainly two different ways

= The grammar transformation rules can specify an
abstract interpreter for the language
+ The interpreter is for the notation and can be applied on
all correct models
= Each model can be “compiled” into a set of rules
+ The set of rules is specific to the particular model

+ Theoretically, each model generates a different set of
rules

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 64

Abstract

Interpreter

Operating

‘ Transaction Handling

: ORState ST | \Transition tar : State
contains
: State is_I ActiveState |::>
src tar
: ORState :Transition : State
contains is
: State . ActiveState
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 65

Ad hoc rules

Rejected

Transaction Handling

t1

:startState

Idle: State

t6

t5

AuthStrd: State

|::> TranHdlg: ORState

contains

Serving: State

% Transitions as rules

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

TranHdlg: ORState| |:> Idle: State
contains
: State
66

Denotational semantics ":2&::3::‘@ § Feedck

Semantic domainy/
Programmingtlansiuagse

% The identification of the right semantic domains
impacts what sentences can be represented
= It is extremely complex for practical modeling languages
+ Usually it is defined only informally
+ Or it captures only certain crucial aspects
»* The semantic domain itself needs

= a syntactic representation to “denote” the meaning of
models

= Tool support for analysis and reasoning
* Good examples are formal methods, like algebraic
specification, Petri nets, CSP, Z, Alloy

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 67

les f d iti
Statecharts to CSP ™= i

1 :FinalState State (fin) =
name = fin stop

2 :SimplelState State(s) =
name = s beh (s)

3 :CompositeSate State (comp) =
name = comp State (default)

isCurrent = false :State

Events = E name = default

target

:PseudoState

— source "
name = init | :Transition

Kind = initial

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 68

; Rules are pairs
Statecharts to Petri nets of productions

ASGG SGG

\/@11
®, | ®

[STran | |

2

3.id = 3.name =@3.name@
3.name = 3.type = “STran”
3.type = “Transition” 3.predicate = @3.event@
3.event = 3.action = @3.action@
3.action =
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 69

Rejected

‘ Transaction Handling

A possible net

Inserted

:|$ Rejected

Transaction Handling

Serving

Authentication Started

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 70

Integration

Ip1

(Mapping among grammars)

cpl
AR
Lo |

Lew b ey]

fffffffffffffffffffffff

s boopes]

fffffffffffffffffffffff

l 3: Cond l l 4: Stat l l 5: Stat l

,,,,,,,,,,,,

The triple GG approach

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

1b: End

l 1a: Begin]—»{ 3: Cond l
T F

4a: Begin 5a: Begin
l 4b: End l l 5b: End l
71

(N

Semantic feedback

% One-way mapping

= The formal model is visible to users

= The visual notation is supplemented with the semantic

domain

* Two-way mapping

= The formal model remains hidden to users

= The formal method is used to interpret visual sentences

= Feedback on the formal model must be mapped back onto

the visual model
+ Ad-hoc graph grammars
+ Simple textual rules

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

72

Separation of concerns
at the meta level

Main Element Interface Internals Details
Axiom Process Process ____ Input -
Input Consumption > Process
Process Output Execution
Output Consumption
Diagram

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

73

Modularity in Graph Transformation
7‘,_DR_=—
exporftrom MUX import types

procedures ?p rec_di(pr) Tp For example:

body s L

implement * Progres: see above
types

procedures
p p o
rec_dl(p,r
§ s, CD Wwamngm g
r =y # My
v
p o° P o’
ignore(p;r) _relipn) |
r =] nr

r
r
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

% Grace: an approach-
from MUXimport rel(p.r) independent initiative

74

Summary

% GT for syntax, semantics, and integration of
VMT's
% Relevant graph transformation theory

= generative power of graph grammars and parsing
of graph languages: specifying and recognizing
the syntax of visual languages

= confluence and termination: translation of models
into semantic domains

=2 theory of formal languages and rewriting

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 75

4- Tool support

Qutline

% Two main groups:

= General purpose modeling environments
+ PROGRES, AGG, Fujaba, ...

= Environments for specifying visual notations
+ DIAGEN, GENGEd, MetaEnv, ...

% Good prototype tools developed in academia

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 77

PROGRES
(PROgrammed Graph Rewriting Systems)

Forrybhm: PROGAES - Wew 1 (¥ 9.4 |

B

production LeadPerry (* Puts ane carge inte the fers

s TR0 oo o o e e) » Graphical/textual

""" - language to specify
graph transformations

% Graph rewrite rules with
complex and negative
conditions

% Cross compilation in
Modula 2, C and Java

At

condition *1.Min > Payment;
transfer 1°.Expenditures := *1Expenditures - Paywont;
3 income i= 1. lncome + Payment:

E and: s

(ol i =

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 78

AGG
(The Attributed Graph Grammar System)

% Algebraic approach to
graph transformation

% Annotations are in Java

» Efficient graph parsing . ==
= Parse grammar e :
= Critical pair analysis

» Easy integration with
Java code

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

79

Fujaba
(From UML to Java and BAck)

e .« * Round trip engineering
Heue smcanES SRR with UML, Java, and
o design patterns

% Class, collaboration and
activity diagrams for
story diagrams
= Dynamic behavior
= Automatic generation

»* Reverse engineering

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

80

DiaGen

File Edit Wiew Structure
(D@ (&) 2]~
03 ESHENS)

P O Madel

(The Diagram Editor Generator)

% Notations are specified
through hypergraphs
* Framework of Java
classes
= to provide basic
functionality
% Generator program
= to produce Java source

Edi prozenies code
| _¥ £dit elass name
Drag mouse to move displayed arca
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 81

GenGED

(Generation of Graphical Env.s for Design)

A

=
[Dupes EM Mus e tem

@ ol [#l=ixis o) Y
=

fie Bt iew Toos faras bep
DieiE [t ey » (- @

Fa [e

[e.[2.[a)
==NE
[8) &«
)l | ™
080 |||

% Graphical editors and
simulation environments
= Syntax grammar
+ Actual syntax
= Parse grammar
+ Free-hand editing
= Simulation grammar
+ To simulate models

% AGG and graphical constraint
solving techniques

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 82

MetaEnv

+H—

[¢ o e e
B I8l e ol
s DFR B oA EE

ERTEER T
e P

% Customizable engine to

EuEE . . | map diagram notations
T o — onto high-level timed
I Petri nets
L i % Rules are pairs of graph
S i grammars
Y — .
% Results are mapped
. It back onto the diagram
. : e model
-
L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 83

5- Conclusions

Main results

% The tutorial has
= Motivated the use of graph transformation in software
engineering

= Introduced the foundations of graph transformation

= Shown example applications of graph transformation
+ GT as semantic domain for behavior modeling
+ GT as meta language for visual modeling techniques

= Presented available tools

% Now, attendees should be able to
= Better understand the different proposals
= Better evaluate if and how they can exploit it in their work

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 85

Future work
(Applications)

% GT should become more “usable” by non
experts:
= It should be better disseminated (This tutorial)

= More examples and case studies to “convince”
skeptical users

= Further cooperations between GT experts and
domain experts

= More friendly tools (even if they are much better
than a few years ago)

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002) 86

Future work
_(Foundations)

% analysis and verification techniques
- theory of concurrency and rewriting
»® semantics-preserving transformations
- evolution / refactoring of diagrams
» refinement and modularity of graph transformations

% relation with other areas like

- process calculi (e.g., Robin Milner's talk): proof techniques
of algebraic and logic methods; Can we adopt them?

- tree- and term-based rewriting techniques (in compilers,

XML, etc.): efficiency of special-purpose tools vs. usability of

graph-based specification; Cant we have both?

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

87

Research Training Network SegraVis
(10/2002 — 9/2006)

Syntactic and Semantic Integration of Visual Modeling Techniques

in visual modeling techniques

Paderborn Leiden
Antwerp London
Barcelona Milan
Berlin Darmstadt
Bremen Pisa
Canterbury Rome

Objectives: to develop meta-level techniques for defining syntax, semantics,
analysis, transformation, ... of UML and other visual models

Contact: Reiko Heckel

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

12 European partners offer grants for young researchers (< 36) with interest

88

‘A few basic references

% HANDBOOK OF GRAPH GRAMMARS AND
COMPUTING BY GRAPH TRANSFORMATION

= Volume 1: foundations
edited by Grzegorz Rozenberg (Leiden University, The
Netherlands)

= Volume 2: Applications, Languages and Tools
edited by H Ehrig (Technical University of Berlin, Germany),
G Engels (University of Paderborn, Germany), H-J Kreowski
(University of Bremen, Germany) & G Rozenberg (Leiden
University, The Netherlands)

= Volume 3: Concurrency, Parallelism, and Distribution
edited by H Ehrig (Technical University of Berlin, Germany),
H-J Kreowski (University of Bremen, Germany), U Montanari
(University of Pisa, Italy) & G Rozenberg (Leiden University,
The Netherlands)

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

‘Web sites

% AGG home page
= tfs.cs.tu-berlin.de/agg/
% PROGRES home page

= Www-i3.informatik.rwth-
aachen.de/research/projects/progres/

% DiaGen home page

= www2.informatik.uni-erlangen.de/DiaGen/
* GenGED home page

» tfs.cs.tu-berlin.de/~genged/
% Graph Grammar Bibliography

= www.informatik.uni-
bremen.de/theorie//appligraph/bibliography.htmi

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

6- Open discussion

QOur Addresses

% Luciano Baresi

= Politecnico di Milano
Dipartimento di Elettronica e Informazione
Piazza L. da Vinci, 32 — 120133 Milano (Italy)
baresi@elet.polimi.it

® Reiko Heckel

= Dr. Reiko Heckel
University of Paderborn
Mathematics/Computer Science Department
Warburger Str, 100 - D33098 Paderborn (Germany)
reiko@upb.de

L. Baresi and R. Heckel - ICGT Tutorial (Barcelona, Spain 08/10/2002)

92

