
Synchronous Reactive Languages
Lustre

Alexandre Denault
Comp-763B
Winter 2008

Outline

■ What's a Synchronous Reactive Language?
■ A Introduction to Lustre
■ Verification, Simulation and Execution
■ A Simple Example
■ Esterel

Synchronous Languages

■ What?
 Time is expressed as a series of external events.
 Events are processed at regular intervals.
 It's like having a clock.

■ Why?
 It's easier to implement in hardware.
 It's easier to verify.

■ Concerns
 If you want to simulate asynchronous behavior, you need to

make sure your clock ticks are small enough.

Stephen A Edwards, Tutorial: Compiling Concurrent Languages for Sequential Processors, Columbia University

Reactive Systems

■ What?
 Systems that have a relationship with their environments. (Harel)

 Their behavior is to react to external stimuli.
■ Why?

 Because reactive systems are easier to map onto hardware.

Lustre

■ First created in 1983.
■ Commercially transformed to Scade in 1993 by Verilog.
■ Esterel Technologies now own the rights to Scade.
■ Active research is done by the Synchrone group from the

Verimag research center.
■ It is not a file system !

Synchrone Group Website; http://www-verimag.imag.fr/SYNCHRONE/

http://www-verimag.imag.fr/SYNCHRONE/

Application

■ Cases studies on Lustre
 Electrical load distribution on A380 aircraft
 Gyroscope in Indian Aircraft industry
 Ariane v launcher, experimental version

■ Companies using Scade (success stories)
 Airbus
 Pratt & Whitney
 CS Canada
 Eurocopter

Deeper look at Lustre

■ A control module in Lustre is called a node.
■ Lustre modules operate on streams.
■ Streams can be booleans or numericals.

Node
Z = X and not Y

X:00100100111
Z:00000100010

Y:10101010101

N. Halbwachs, F. Lagnier and C. Ratel.; Programming and verifying critical systems by means of the
synchronous data-flow programming language Lustre.; IEEE Transactions on Software Engineering,
Special Issue on the Specification and Analysis of Real-Time Systems. September 1992.

Syntax Examples

■ On boolean values:
 A = X and not Y
 A = X xor Y
 A = if X then Y else Z

■ On numerical values
 A = X + Y
 A = X – Y
 A = X div Y
 A = if (X > Y) then X else Y
 A = if (X <> Z) then X else Y

Pre Operator

■ The pre operator allows us to refer the n position of a
stream as the n-1 position of another stream.

Node
Z = pre X

X:x
1
x

2
x

3
x

4
x

5
x

6 Z:nil x
1
x

2
x

3
x

4
x

5

-> Operator

■ The -> operator is used to initialize streams.

Node
Z = X->Y

X:x
1
x

2
x

3
x

4
x

5
x

6

Z:x
1
y

2
y

3
y

4
y

5
y

6

Y:y
1
y

2
y

3
y

4
y

5
y

6

Pre and -> combined

■ The Pre and -> operators are most useful when
combined.

Node
Z = X->pre(Y)

X:x
1
x

2
x

3
x

4
x

5
x

6

Z:x
1
y

1
y

2
y

3
y

4
y

5

Y:y
1
y

2
y

3
y

4
y

5
y

6

VSE

■ Verification: We can run verifications on the model to
insure that catastrophic situations cannot occur.

■ Simulation: We can use a simulator to verify that the
model functions correctly.

■ Execution: We can generate code from the model, and
then integrate that code into the target platform, where it
will be executed.

Verification

■ We can establish safety properties for our system:
 In a Y segment, only one car at a time should be merging in.
 Landing gear should not retract while plane is landing.

■ Verification is the action of insuring that these safety
properties are never violated.

■ In Lustre, safety properties are described as assertions,
and must always be true.

Temporal Logic

■ Describing certain assertions requires temporal logic.
Any occurrence of a critical situation causes an alarm, which must

be sustained within a five seconds delay.
■ This statement could be generalized to

Any occurrence of event A must cause the condition B to be true
until the next occurrence of C.

■ This requires knowledge of the futur, which Lustre does
not.

■ However, this can be rewritten as
Any time A has occurred in the past, either B has been

continuously true, or C has occurred at least once, since the
last occurrence of A.

Various Forms of Lustre

Lustre: .lus
This contains the Lustre

nodes in their textual
format.

Lustre-Esterel Common
Format: .oc
The Lustre application gets

reduced to a FSA.
It can then be optimized.

C source code: .c
The FSN gets transformed

into C source code.

.lus

.oc

.c

lustre test.lus

lux test.oc

Finite State Automaton

node EDGE(x: bool) returns (y: bool);
Y = false -> X and not pre(X)

Simple Example

Signal Light Train

Train Track

Train Track

A

B C

Exit Signal

Entry Signal

Ins and Outs

■ Ins
 on_A : Is there a train on track segment A?
 on_B : Is there a train on track segment B?
 on_C : Is there a train on track segment C?
 ack_AB : Is track in the AB position?
 ack_BC : Is track in the BC position?

■ Outs
 grant_access : Should access light be green?
 grant_exit : Should exit light be green?
 do_AB : Should track switch in the AB position?
 do_BC : Should track switch in the BC position?

Lustre Model

node UMS(on_A,on_B,on_C,ack_AB,ack_BC: bool)
 returns (grant_access,grant_exit,
 do_AB,do_BC: bool);
var empty_section, only_on_B: bool;
let
 grant_access = empty_section and ack_AB;
 grant_exit = only_on_B and ack_BC;
 do_AB = not ack_AB and empty_section;
 do_BC = not ack_BC and only_on_B;
 empty_section = not(on_A or on_B or on_C);
 only_on_B = on_B and not(on_A or on_C);
tel

Verification Statements

node UMS_verif(on_A,on_B,on_C,
 ack_AB,ack_BC: bool)
 returns(property: bool);
var
 grant_access,grant_exit: bool;
 do_AB,do_BC: bool;
 no_collision,exclusive_req: bool;
 no_derail_AB,no_derail_BC: bool;
 empty_section, only_on_B: bool;
let
 empty_section = not(on_A or on_B or on_C);
 only_on_B = on_B and not(on_A or on_C);

 -- ASSERTIONS
 assert not(ack_AB and ack_BC);
 assert true ->

always_from_to(ack_AB,ack_AB,do_BC);
 assert true ->

always_from_to(ack_BC,ack_BC,do_AB);
 assert empty_section -> true;

 assert true -> implies(edge(not
empty_section), pre grant_access);

 assert true -> implies(edge(on_C), pre
grant_exit);

 assert true -> implies(edge(not on_A),on_B);
 assert true -> implies(edge(not on_B), on_A

or on_C);
 -- UMS CALL
 (grant_access,grant_exit,do_AB,do_BC) =

UMS(on_A,on_B,on_C,ack_AB,ack_BC);
 -- PROPERTIES
 no_collision =

implies(grant_access,empty_section);
 exclusive_req = not(do_AB and do_BC);
 no_derail_AB = always_from_to(ack_AB,

grant_access, only_on_B);
 no_derail_BC = always_from_to(ack_BC,

grant_exit, empty_section);
 property = no_collision and exclusive_req and

no_derail_AB and no_derail_BC;

tel

Simulation

Implementation

Esterel

■ First created in 1982
■ Commercially transformed in 1999
■ Last open version of Esterel is 5.92, and was released in

2000
■ A commercial version of Esterel is available from Esterel

Technologies
■ The Open Esterel tools were mostly developed by the

Inria research center.

Gérard Berry;The Foundations of Esterel; To appear in Proof, Language and Interaction: Essays in Honour of
Robin Milner, G. Plotkin, C. Stirling and M. Tofte, editors, MIT Press, 1998

Esterel Website: http://www-sop.inria.fr/esterel.org/files/

http://www-sop.inria.fr/esterel.org/files/

Lustre vs Esterel

Lustre
■ Declarative Language

 Describes what is to be
computed.

Node ABRO(A,B,R: bool)
 returns (O: bool);
let
 O = R and (A or B);
tel

Esterel
■ Imperative Language

 Describes how this is to
be computer.

module ABRO:
input A, B, R;
output O;

loop
 [await A || await B];
 emit O
each R

end module

Conclusion

■ Lustre is a Synchronous Reactive Language
■ It operates on streams (input and output)
■ Models in Lustre can be Verified, Simulated and Execute
■ I can draw cool trains
■ Similarities between Lustre and Esterel

