Chapter 3

The Epsilon Object Language
(EOL)

The primary aim of EOL is to provide a reusable set of common model
management facilities, atop which task-specific languages can be imple-
mented. However, EOL can also be used as a general-purpose standalone
model management language for automating tasks that do not fall into
the patterns targeted by task-specific languages. This section presents the
syntax and semantics of the language using a combination of abstract syn-
tax diagrams, concrete syntax examples and informal discussion.

3.1 Module Organization

In this section the syntax of EOL is presented in a top-down manner. As
displayed in Figure 3.1, EOL programs are organized in modules. Each
module defines a body and a number of operations. The body is a block of
statements that are evaluated when the module is executed. Each opera-
tion defines the kind of objects on which it is applicable (context), a name,
a set of parameters and optionally a return type. Modules can also import
other modules using import statements, and access their operations.

23

2IN30NIIS SNPOA T0H :1°¢ 2Ind1g

[Buas:sanea-

sdajaweled +

24

juawajols uonejouuyajduls
*
> BuLas aweu-
sjuaaieys F o,
uojedepaglajawesed uojedepaguonedadg
T'0 #
. suoiEdsdopalE[DEap | uolssaldxg iuolssaldxa-
Apog + T''0 | 3<ajuoo + uoiejouuyajqelnlaxy
Ja0jgluawalels
fpog+] FO0 uoneaeragquoliesadoauluy adh [Lingsd +
5/
suopjedeRaquoiesado + T o« adA)
BuLs aweu-
sjuawajeispodu +
i SUOQEJOULE + yojjejouuy
+*
[~ Bulys:peyod i+
anpop|o ajnpo aled 0
Inpojyjo3 INpOy qrijeq JUewaeIsL0dW]

O 00N O U1 AW N

1l.addl () .add2 () .println();

operation Integer addl() : Integer ({
return self + 1;

}

operation Integer add2() : Integer ({
return self + 2;

}
Listing 3.1: Exemplar context-defining EOL operations

3.2 User-Defined Operations

In typical object oriented languages such as Java and C+ +, operations are
defined inside classes and can be invoked on instances of those classes.
EOL on the other hand is not object-oriented in the sense that it does
not define classes itself, but nevertheless needs to manage objects of types
defined externally to it (e.g. in metamodels). By defining the context-type
of an operation explicitly, the operation can be called on instances of the
type as if it was natively defined by the type. Alternatively, context-less
operations could be defined; however the adopted technique significantly
improves readability of the concrete syntax.

For example, consider the code excerpts displayed in Listings 3.1 and
3.2. In Listing 3.1, the operations add1 and add2 are defined in the con-
text of the built-in Integer type, which is specified before their names.
Therefore, in line 1 they can be invoked using the 1.add1().add2() expres-
sion: the context (the integer 1) will be assigned to the special variable
self. On the other hand, in Listing 3.2 where no context is defined, they
have to be invoked in a nested manner which follows an in-to-out direc-
tion instead of the left to right direction used by the former excerpt. As
complex model queries often involve invoking multiple properties and op-
erations, this technique is particularly beneficial to the overall readability
of the code.

25

O 0N O U AW N

O 0N O U1 AWN

—_
o

add2 (addl (1)) .println () ;

operation addl (base : Integer) : Integer {
return base + 1;

}

operation add2 (base : Integer) : Integer {
return base + 2;

}
Listing 3.2: Exemplar EOL context-less EOL operations

"1".test ();
l.test();

operation String test () {
(self + " is a string") .println();

}

operation Integer test () {
(self + "is an integer") .println();

}
Listing 3.3: Demonstration of polymorphism in EOL

EOL supports polymorphic operations using a runtime dispatch mech-
anism. Multiple operations with the same name and parameters can be
defined, each defining a distinct context type. For example, in Listing 3.3,
the statement in line 1 invokes the test operation defined in line 4, while
the statement in line 2 invokes the test operation defined in line 8.

3.2.1 Annotations

EOL supports two types of annotations: simple and executable. A simple
annotation specifies a name and a set of String values while an executable
annotation specifies a name and an expression. The concrete syntaxes of
simple and executable annotations are displayed in Listings 3.4 and 3.5
respectively. Several examples for simple annotations are shown in List-

26

@name value (,value)

Listing 3.4: Concrete syntax of simple annotations

$name expression

Listing 3.5: Concrete syntax of executable annotations

@colors red
@colors red, blue
@colors red, blue, green

Listing 3.6: Examples of simple annotations

ing 3.6. Examples for executable annotations will be given in the follow-
ing sections.

In stand-alone EOL, annotations are supported only in the context of
operations, however as discussed in the sequel, task-specific languages
also make use of annotations in their constructs, each with task-specific
semantics. EOL operations support three particular annotations: the pre
and post executable annotations for specifying pre and post-conditions,
and the cached simple annotation, which are discussed below.

3.2.2 Pre/post conditions in user-defined operations

A number of pre and post executable annotations can be attached to EOL
operations to specify the pre- and post-conditions of the operation. When
an operation is invoked, before its body is evaluated, the expressions of
the pre annotations are evaluated. If all of them return true, the body of
the operation is processed, otherwise, an error is raised. Similarly, once
the body of the operation has been executed, the expressions of the post
annotations of the operation are executed to ensure that the operation
has had the desired effects. Pre and post annotations can access all the
variables in the parent scope, as well as the parameters of the operation

27

0N hWN

1.add(2);
l.add(-1);

Spre 1 > 0

S$post _result > self

operation Integer add(i : Integer) : Integer ({
return self + i;

}
Listing 3.7: Example of pre- and post-conditions in an EOL operation

and the object on which the operation is invoked (through the self vari-
able). Moreover, in post annotations, the returned value of the operation
is accessible through the built-in _result variable. An example of using pre
and post conditions in EOL appears in Listing 3.7.

In line 4 the add operation defines a pre-condition stating that the
parameter i must be a positive number. In line 5, the operation defines
that result of the operation (_result) must be greater than the number on
which it was invoked (self). Thus, when executed in the context of the
statement in line 1 the operation succeeds, while when executed in the
context of the statement in line 2, the pre-condition is not satisfied and an
error is raised.

3.2.3 Operation Result Caching

EOL supports caching the results of parameter-less operations using the
@cached simple annotation. In the following example, the Fibonacci num-
ber of a given Integer is calculated using the fibonacci recursive opera-
tion displayed in Listing 3.8. Since the fibonacci operation is declared
as cached, it is only executed once for each distinct Integer and subse-
quent calls on the same target return the cached result. Therefore, when
invoked in line 1, the body of the operation is called 16 times. By con-
trast, if no @cached annotation was specified, the body of the operation
would be called recursively 1973 times. This feature is particularly useful

28

O 0 N O U1 AWN

— =
=

15.fibonacci () .println () ;

@cached
operation Integer fibonacci() : Integer {
if (self = 1 or self = 0) {
return 1;
}
else {
return (self-1).fibonacci() + (self-2).fibonacci();
}
}

Listing 3.8: Calculating the Fibonacci number using a cached operation

for performing queries on large models and caching their results without
needing to introduce explicit variables that store the cached results.

3.3 Types

As is the case for most programming languages, EOL defines a built-in
system of types, illustrated in Figure 3.2. The Any type, inspired by the
OclAny type of OCL, is the basis of all types in EOL including Collection
types. The operations supported by instances of the Any type are outlined
in Table 3.1%.

Iparameters within square braces [] are optional

29

Table 3.1: Operations of type Any

Signature

Description

isDefined() : Boolean

Returns true if the object is defined
and false otherwise

isUndefined() : Boolean

Returns true if the object is unde-
fined and false otherwise

ifUndefined(alt : Any) : Any

If the object is undefined, it returns
alt else it returns the object

isTypeOf(type : Type) Returns true if the object is of the

Boolean given type and false otherwise

isKindOf (type : Type) Returns true if the object is of the

Boolean given type or one of its subtypes
and false otherwise

type() : Type Returns the type of the object. The

EOL type system is illustrated in
Figure 3.2

asString() : String

Returns a string representation of
the object

asInteger() : Integer

Returns an Integer based on the
string representation of the object.
If the string representation is not
of an acceptable format, an error is
raised

asReal() : Real

Returns a Real based on the string
representation of the object. If the
string representation is not of an ac-
ceptable format, an error is raised

30

asBoolean() : Boolean

Returns a Boolean based on the
string representation of the object.
If the string representation is not
of an acceptable format, an error is
raised

asBag() : Bag

Returns a new Bag containing the
object

asSequence() : Sequence

Returns a new Sequence containing
the object

asSet() : Set

Returns a new Set containing the
object

asOrderedSet() : OrderedSet

Returns a new OrderedSet contain-
ing the object

print([prefix : String]) : Any

Prints a string representation of the
object on which it is invoked pre-
fixed with the optional prefix string
and returns the object on which
it was invoked. In this way, the
print operation can be used for de-
bugging purposes in a non-invasive
manner

println([prefix : String])
Any

Has the same effects with the print
operation but also produces a new
line in the output stream.

31

String

format([pattern : String]) : | Uses the provided pattern to form

a String representation of the ob-
ject on which the method is in-
voked. The pattern argument must
conform to the format string syntax

defined by Java?.
ModelElementType Any Mative
-model: String s -implemertation: String
-type: String
= —
FANAN £
OrderedSet
Boolean PrimitiveType Collection
=
—
< —— Set
Real Map
Bag
Integer String Segquence

Figure 3.2: Overview of the type system of EOL

2http://download.oracle.com/javase/6/docs/api/java/util/

Formatter.html#syntax

32

3.3.1 Primitive Types

EOL provides four primitive types: String, Integer, Real and Boolean. The
String type represents finite sequences of characters and supports the fol-
lowing operations which can be invoked on its instances.

Table 3.2: Operations of type String

Signature Description
charAt(index Integer) Returns the character in the speci-
String fied index

concat(str : String) : String

Returns a concatenated form of the
string with the str parameter

length() : Integer

Returns the number of characters in
the string

toLowerCase() : String

Returns a new string where all the
characters have been converted to
lower case

firstToLowerCase() : String

Returns a new string the first char-
acter of which has been converted
to lower case

toUpperCase() : String

Returns a new string where all the
characters have been converted to
upper case

firstToUpperCase() : String

Returns a new string, the first char-
acter of which has been converted
to upper case

isSubstringOf(str :
Boolean

String) :

Returns true iff the string the oper-
ation is invoked on is a substring of
str

33

matches(reg String)

Boolean

Returns true if there are occur-
rences of the regular expression reg
in the string

replace(source : String, target
: String) : String

Returns a new string in which all
instances of source have been re-
placed with instances of target

split(reg String) Se- | Splits the string using as a delim-

quence(String) iter the provided regular expres-
sion, reg, and returns a sequence
containing the parts

startsWith(str String) Returns true iff the string starts

Boolean with str

endsWith(str String) Returns true iff the string ends with

Boolean str

isInteger() : Boolean Returns true iff the string is an inte-
ger

isReal() : Boolean Returns true iff the string is a real
number

toCharSequence() Se- | Returns a sequence containing all

quence(String) the characters of the string

substring(index : Integer) : | Returns a sub-string of the string

String starting from the specified index

and extending to the end of the
original string

substring(startindex : Integet,
endIndex : Integer) : String

Returns a sub-string of the string
starting from the specified startln-
dex and ending at endIndex

34

pad(length : Integer, padding | Pads the string up to the speci-
String, right : Boolean) : | fied length with specified padding
String (e.g. "foo".pad(5, "*", true) returns
nfoofﬁ':”)
trim() : String Returns a trimmed copy of the
string

The Real type represents real numbers and provides the following op-

erations.
Table 3.3: Operations of type Real

Signature Description

ceiling() : Integer Returns the nearest Integer that is
larger than the real

floor() : Integer Returns the nearest Integer that is
greater than the real

round() : Integer Rounds the real to the nearest Inte-
ger

pow(exponent : Real) : Real | Returns the real to the power of ex-
ponent

log() : Real Returns the natural logarithm of
the real

log10() : Real Returns the 10-based logarithm of
the real

abs() : Real Returns the absolute value of the
real

max(other : Real) : Real Returns the maximum of the two
reals

35

min(other : Real) : Real Returns the minimum of the two re-

als

The Integer type represents natural numbers and negatives and ex-
tends the Real primitive type. It also defines the following operations:

Table 3.4: Operations of type Integer

Signature Description
to(other : Integer) : Se- | Returns a sequence of inte-
quence(Integer) gers (e.g. 1l.to(5) returns Se-

quence{1,2,3,4,5})
iota(end : Integer, step : Inte- | Returns a sequence of integers up

ger) : Sequence(Integer) to end using the specified step
(e.g. 1l.iota(10,2) returns Se-
quence{1,3,5,7,9})

Finally, the Boolean type represents true/false states and provides no
additional operations to those provided by the base Any type.

3.3.2 Collections and Maps

EOL provides four types of collections and a Map type. The Bag type rep-
resents non-unique, unordered collections, the Sequence type represents
non-unique, ordered collections, the Set type represents unique and un-
ordered collections and the OrderedSet represents unique and ordered
collections.

All collection types inherit from the abstract Collection type. Apart
from simple operations, EOL also supports first-order logic operations on
collections. The following operations apply to all types of collections:

36

Table 3.5: Operations of type Collection

Signature

Description

add(item : Any)

Adds an item to the collection. If
the collection is a set, addition of
duplicate items has no effect

addAll(col : Collection)

Adds all the items of the col argu-
If the col-
lection is a set, it only adds items

ment to the collection.

that do not already exist in the col-
lection

remove(item : Any)

Removes an item from the collec-
tion

removeAll(col : Collection)

Removes all the items of col from
the collection

clear() Empties the collection
includes(item Any) Returns true if the collection in-
Boolean cludes the item

excludes(item Any) Returns true if the collection ex-
Boolean cludes the item

includesAll(col : Collection) :
Boolean

Returns true if the collection in-
cludes all the items of collection col

excludesAll(col : Collection) :
Boolean

Returns true if the collection ex-
cludes all the items of collection col

including(item : Any) : Col-
lection

Returns a new collection that also
contains the item — unlike the add()
operation that adds the item to the
collection itself

37

excluding(item : Any) : Col-
lection

Returns a new collection that ex-
cludes the item - unlike the re-
move() operation that removes the
item from the collection itself

includingAll(col : Collection)
: Collection

Returns a new collection that is a
union of the two collections. The
type of the returned collection (i.e.
Bag, Sequence, Set, OrderedSet) is
same as the type of the collection
on which the operation is invoked

excludingAll(col : Collection)
: Collection

Returns a new collection that ex-
cludes all the elements of the col
collection

flatten() : Collection

Recursively flattens all items that
are of collection type and returns a
new collection where no item is a
collection itself

count(item : Any) : Integer

Returns the number of times the
item exists in the collection

size() : Integer

Returns the number of items the
collection contains

isEmpty() : Boolean

Returns true if the collection does
not contain any elements and false
otherwise

random() : Any

Returns a random item from the
collection

clone() : Collection

Returns a new collection of the
same type containing the same
items with the original collection

38

concat() : String Returns the string created by con-
verting each element of the collec-
tion to a string

concat(separator : String) : | Returns the string created by con-
String verting each element of the collec-
tion to a string, using the given ar-
gument as a separator

The following operations apply to ordered collection types (i.e. Se-
quence and OrderedSet):

Table 3.6: Operations of types Sequence and Ordered-

Set
Signature Description
first() : Any Returns the first item of the collec-
tion
last() : Any Returns the last item of the collec-
tion
at(index : Integer) : Any Returns the item of the collection at

the specified index

removeAt(index : Integer) : | Removes and returns the item at
Any the specified index.

indexOf(item : Any) : Integer | Returns the index of the item in the
collection or -1 if it does not exist

invert() : Collection Returns an inverted copy of the col-
lection

Also, EOL collections support the following first-order operations:

39

Table 3.7: First-order logic operations on Collections

Signature

Description

select(iterator : Type | condi-
tion) : Collection

Returns a sub-collection containing
only items of the specified type that
satisfy the condition

selectOne(iterator Type |

condition) : Any

Returns the first element that satis-
fies the condition

reject(iterator : Type | condi-
tion) : Collection

Returns a sub-collection containing
only items of the specified type that
do not satisfy the condition

collect(iterator : Type | ex-

pression) : Collection

Returns a collection containing the
results of evaluating the expression
on each item of the collection that
is of the specified type

closure(iterator : Type | ex-

pression) : Collection

Returns a collection containing the
results of evaluating the transitive
closure of the results produced by
the expression on each item of the
collection that is of the specified

type

Returns a map containing key-value
pairs produced by evaluating the
key and value expressions on each
item of the collection that is of the
specified type

aggregate (iterator Type |
keyExpression, valueExpres-
sion) : Map

one(iterator : Type | condi-

tion) : Boolean

Returns true if there exists exactly
one item in the collection that sat-
isfies the condition

40

exists(iterator : Type | condi- | Returns true if there exists at least
tion) : Boolean one item in the collection that sat-
isfies the condition

forAll(iterator : Type | condi- | Returns true if all items in the col-
tion) : Boolean lection satisfy the condition

sortBy(iterator: Type | expres- | Returns a copy of the collection
sion) : Collection sorted by the results of evaluating
the expression on each item of the
collection that conforms to the iter-

ator type

The Map type represents an array of key-value pairs in which the keys
are unique. The type provides the following operations.

Table 3.8: Operations of type Map

Signature Description

put(key : Any, value : Any) Adds the key-value pair to the map.
If the map already contains the
same key, the value is overwritten

get(key : Any) : Any Returns the value for the specified
keys

containsKey(key : Any) : | Returns true if the map contains the

Boolean specified key

keySet() : Set Returns the keys of the map

values() : Bag Returns the values of the map

clear() Clears the map

41

AW N R

var frame = new Native ("javax.swing.JFrame");

frame.title = "Opened with EOL";
frame.setBounds (100,100,300, 200) ;
frame.visible = true;

Listing 3.9: Demonstration of NativeType in EOL

var file = new Native ("Jjava.io.File") ("myfile.txt");
file.absolutePath.println () ;

Listing 3.10: Demonstration of NativeType in EOL

3.3.3 Native Types

As discussed earlier, while the purpose of EOL is to provide significant
expressive power to enable users to manage models at a high level of
abstraction, it is not intended to be a general-purpose programming lan-
guage. Therefore, there may be cases where users need to implement
some functionality that is either not efficiently supported by the EOL run-
time (e.g. complex mathematical computations) or that EOL does not
support at all (e.g. developing user interfaces, accessing databases). To
overcome this problem, EOL enables users to create objects of the un-
derlying programming environment by using native types. A native type
specifies an implementation property that indicates the unique identifier
for an underlying platform type. For instance, in a Java implementation
of EOL the user can instantiate and use a Java class via its class identi-
fier. Thus, in Listing 3.9 the EOL excerpt creates a Java window (Swing
JFrame) and uses its methods to change its title and dimensions and make
it visible.

To pass arguments to the constructor of a native type, a parameter list
must be added, such as that in Listing 3.10.

42

3.3.4 Model Element Types

A model element type represents a meta-level classifier. As discussed in
Section 2, Epsilon intentionally refrains from defining more details about
the meaning of a model element type to be able to support diverse mod-
elling technologies where a type has different semantics. For instance a
MOF class, an XSD complex type and a Java class can all be regarded as
model element types according to the implementation of the underlying
modelling framework.

In case of multiple models, as well as the name of the type, the name
of the model is also required to resolve a particular type since different
models may contain elements of homonymous but different model ele-
ment types. In case a model defines more than one type with the same
name (e.g. in different packages), a fully qualified type name must be
provided.

In terms of concrete syntax, inspired by ATL, the ! character is used to
separate the name of the type from the name of the model it is defined in.
For instance Ma!A represents the type A of model Ma. Also, to support
modelling technologies that provide hierarchical grouping of types (e.g.
using packages) the :: notation is used to separate between packages and
classes. A model element type supports the following operations:

Table 3.9: Operations of Model Element Types

Signature Description

allOfType() : Set Returns all the elements in the
model that are instances of the type
allofKind() : Set Returns all the elements in the
model that are instances either of
the type itself or of one of its sub-

types

43

1 UMLl1l4!Core::Foundation::Class.allInstances();

Listing 3.11: Demonstration of the concrete syntax for accessing model
element types

alllnstances() : Set Alias for allOfKind() (for compati-
bility with OCL)

all() : Set Alias for allOfKind() (for syntax-
compactness purposes)

isInstantiable() : Boolean Returns true if the type is instan-
tiable (i.e. non-abstract)

createlnstance() : Any Creates an instance of the type in
the model

As an example of the concrete sytnax, Listing 3.11 retrieves all the
instances of the Class type (including instances of its subtypes) defined
in the Core package of the UML 1.4 metamodel that are contained in the
model named UML14.

3.4 Expressions

3.4.1 Literal Values

EOL provides special syntax constructs to create instances of each of the
built-in types:

Integer literals are defined by using one or more decimal digits (such as
42 or 999). Optionally, long integers (with the same precision as a
Java Long) can be produced by adding a “1” suffix, such as 421.

Real literals are defined by:

44

e Adding a decimal separator and non-empty fractional part to
the integer part, such as 42.0 or 3.14. Please note that .2 and
2. are not valid literals.

e Adding a floating point suffix: “f” and “F” denote single preci-
sion, and “d” and “D” denote double precision. For example, 2f
or 3D.

e Adding an exponent, such as 2e+1 (equal to 2el) or 2e-1.

e Using any combination of the above options.

String literals are sequences of characters delimited by single (" hi’) or
double ("hi™) quotes. Quotes inside the string can be escaped by
using a backslash, such as in "A\”s’ or "A\"s". Literal back-
slashes need to be escaped as well, such as in * A\\B’. Special es-
cape sequences are also provided: \n for a newline, \t for a hori-
zontal tab and \r for a carriage return, among others.

Boolean literals use the true reserved keyword for the true Boolean value,
and false reserved keyword for the false Boolean value.

Sequence and most other collections (except Maps) also have literals.
Their format is T {e}, where T is the name of the type and e are zero
or more elements, separated by commas. For instance, Sequence
{} is the empty sequence, and Set {1, 2, 3} is the set of numbers
between 1 and 3.

Map literals are similar to the sequential collection literals, but their el-
ements are of the form key = value. For instance, Map {’a’ = 1, b’
= 2} is a map which has two keys, “a” and “b”, which map to the
integer values 1 and 2, respectively.

Please note that, when defining an element such as 1 = 2 = 3, the
key would be 1 and the value would be the result of evaluating 2 =

45

SimpleOperationCallExpression

+ parameterialues

*

+ expression

Expression

0.1
-—

+ source

'D..l o

DeclarativeOperationCallExpression

kv

OperationCallExpression

+ operationMarm e: 5tring

VariableReferenceExpression

+referencedy ariable: String

[FeatureCallExpression

PropertyCallExpression

+property: String

Figure 3.3: Overview of the feature navigation EOL expressions

3 (false). If you would like to use the result of the expression 1 = 2

as key, you will need to enclose it in parenthesis, such as in (1 = 2)

= 3.

3.4.2 Feature Navigation

Since EOL needs to manage models defined using object oriented mod-

elling technologies, it provides expressions to navigate properties and in-

voke simple and declarative operations on objects (as presented in Figure

3.3).

46

g~ W N =

"Something".println () ;

operation Any println() : Any {
("Printing : " + self)->println();
}

Listing 3.12: Invoking operations using EOL

In terms of concrete syntax, ‘.’ is used as a uniform operator to access
a property of an object and to invoke an operation on it. The ‘=’ oper-
ator, which is used in OCL to invoke first-order logic operations on sets,
has been also preserved for syntax compatibility reasons. In EOL, every
operation can be invoked both using the ‘.’ or the '—’ operators, with a
slightly different semantics to enable overriding the built-in operations. If
the ‘.’ operator is used, precedence is given to the user-defined operations,
otherwise precedence is given to the built-in operations. For instance, the
Any type defines a println() method that prints the string representation
of an object to the standard output stream. In Listing 3.12, the user has
defined another parameterless println() operation in the context of Any.
Therefore the call to println() in Line 1 will be dispatched to the user-
defined println() operation defined in line 3. In its body the operation
uses the ‘—’ operator to invoke the built-in println() operation (line 4).

3.4.3 Arithmetical and Comparison Operators

EOL provides common operators for performing arithmetical computa-
tions and comparisons illustrated in Tables 3.10 and 3.11 respectively.

Table 3.10: Arithmetical operators

Operator Description

+ Adds reals/integers and concate-
nates strings

47

Subtracts reals/integers

— (unary)

Returns the negative of a real/inte-
ger

Multiplies reals/integers

Divides reals/integers

Table 3.11: Comparison operators

Operator

Description

Returns true if the left hand side
equals the right hand side. In
the case of primitive types (String,
Boolean, Integer, Real) the operator
compares the values; in the case of
objects it returns true if the two ex-
pressions evaluate to the same ob-
ject

<>

Is the logical negation of the (=)
operator

For reals/integers returns true if the
left hand side is greater than the
right hand side number

For reals/integers returns true if the
left hand side is less than then right
hand side number

For reals/integers returns true if the
left hand side is greater or equal to
the right hand side number

48

<= For reals/integers returns true if the
left hand side is less or equal to

then right hand side number

3.4.4 Logical Operators

EOL provides common operators for performing logical computations il-
lustrated in Table 3.12. Logical operations apply only to instances of the
Boolean primitive type.

Table 3.12: Logical Operators

Operator Description

and Returns the logical conjunction of
the two expressions

or Returns the logical disjunction of
the two expressions

not Returns the logical negation of the
expression

implies Returns the logical implication of

the two expressions. Implication is
calculated according to the truth ta-
ble 3.13

Xor returns true if only one of the

involved expressions evaluates to
true and false otherwise

Table 3.13: Implies Truth Table

Left | Right | Result

49

true | true true

true | false | false

false | true true

false | false | true

3.4.5 Enumerations

EOL provides the # operator for accessing enumeration literals. For ex-
ample, the VisibilityEnum#vk_public expression returns the value of the
literal vk_public of the VisibilityEnum enumeration. For EMF metamodels,
VisibilityEnum#vk_public.instance can also be used.

3.5 Statements

3.5.1 Variable Declaration Statement

A variable declaration statement declares the name and (optionally) the
type and initial value of a variable in an EOL program. If no type is
explicitly declared, the variable is assumed to be of type Any. For variables
of primitive type, declaration automatically creates an instance of the type
with the default values presented in Table 3.14. For non-primitive types
the user has to explicitly assign the value of the variable either by using
the new keyword or by providing an initial value expression. If neither is
done the value of the variable is undefined. Variables in EOL are strongly-
typed. Therefore a variable can only be assigned values that conform to
its type (or a sub-type of it).

Scope The scope of variables in EOL is generally limited to the block
of statements where they are defined, including any nested blocks. Nev-
ertheless, as discussed in the sequel, there are cases in task-specific lan-

50

Table 3.14: Default values of primitive types

Type Default value
Integer | O

Boolean | false

String "

Real 0.0

guages that build atop EOL where the scope of variables is expanded to
other non-nested blocks as well. EOL also allows variable shadowing; that
is to define a variable with the same name in a nested block that overrides
a variable defined in an outer block.

In Listing 3.13, an example of declaring and using variables is pro-
vided. Line 1 defines a variable named i of type Integer and assigns it an
initial value of 5. Line 2 defines a variable named c of type Class (from
model Uml) and creates a new instance of the type in the model (by us-
ing the new keyword). The commented out assignment statement of line
3 would raise a runtime error since it would attempt to assign a String
value to an Integer variable. The condition of line 4 returns true since
the c variable has been initialized before. Line 5 defines a new variable
also named i that is of type String and which overrides the Integer vari-
able declared in line 1. Therefore the assignment statement of line 6 is
legitimate as it assigns a string value to a variable of type String. Finally,
as the program has exited the scope of the if statement, the assignment
statement of line 7 is also legitimate as it refers to the i variable defined
in line 1.

3.5.2 Assignment Statement

The assignment statement is used to update the values of variables and
properties of native objects and model elements.

51

0N hWN

AW N =

var i Integer = 5;
var ¢ : new Uml!Class;
//1 = "somevalue";
if (c.isDefined()) {
var i : String;
i = "somevalue";
}
i = 3;

Listing 3.13: Example illustrating declaration and use of variables

var a : new Uml!Class;
var b = a;

a.name = "Customer";
b.name.println();

Listing 3.14: Assigning the value of a variable by reference

Variable Assignment When the left hand side of an assignment state-
ment is a variable, the value of the variable is updated to the object to
which the right hand side evaluates to. If the type of the right hand side
is not compatible (kind-of relationship) with the type of the variable, the
assignment is illegal and a runtime error is raised. Assignment to objects
of primitive types is performed by value while assignment to instances of
non-primitive values is performed by reference. For example, in Listing
3.14, in line 1 the value of the a variable is set to a new Class in the Uml
model. In line 2, a new untyped variable b is declared and its value is
assigned to a. In line 3 the name of the class is updated to Customer and
thus, line 4 prints Customer to the standard output stream. On the other
hand, in Listing 3.15, in line 1 the a String variable is declared. In line 2
an untyped variable b is declared. In line 3, the value of a is changed to
Customer (which is an instance of the primitive String type). This has no
effect on b and thus line 4 prints an empty string to the standard output
stream.

52

AW N =

var a : String;
var b = a;

a = "Customer";
b.println();

Listing 3.15: Assigning the value of a variable by value

EStructuralFeature feature = x.eClass () .getEStructuralFeature("y");
x.eSet (feature, a);

Listing 3.16: Java code that assigns the value of a property of a model
element that belongs to an EMF-based model

Native Object Property Assignment When the left hand side of the as-
signment is a property of a native object, deciding on the legality and
providing the semantics of the assignment is delegated to the execution
engine. For example, in a Java-based execution engine, given that x is a
native object, the statement x.y = a may be interpreted as x.setY(a) or if
X is an instance of a map x.put(”x”,a). By contrast, in a C# implementa-
tion, it can be interpreted as x.y = a since the language natively supports
properties in classes.

Model Element Property Assignment When the left hand side of the
assignment is a property of a model element, the model that owns the par-
ticular model element (accessible using the ModelRepository.getOwningModel ()
operation) is responsible for implementing the semantics of the assign-
ment using its associated propertyGetter as discussed in Section 2.5. For
example, if x is a model element, the statement x.y = a may be interpreted
using the Java code of Listing 3.16 if x belongs to an EMF-based model or
using the Java code of Listing 3.17 if it belongs to an MDR-based model.

53

1 StructuralFeature feature = findStructuralFeature (x.refClass(), "y");
2 x.refSetValue (feature, a);

Listing 3.17: Java code that assigns the value of a property of a model
element that belongs to an MDR-based model

3.5.3 Special Assignment Statement

In task-specific languages, an assignment operator with task-specific se-
mantics is often required. Therefore, EOL provides an additional as-
signment operator. In standalone EOL, the operator has the same se-
mantics with the primary assignment operator discussed above, however
task-specific languages can redefine its semantics to implement custom
assignment behaviour. For example, consider the simple model-to-model
transformation of Listing 3.18 where a simple object oriented model is
transformed to a simple database model using an ETL (see Section 5)
transformation. The Class2Table rule transforms a Class of the OO model
into a Table in the DB model and sets the name of the table to be the same
as the name of the class. Rule Atribute2Column transforms an Attribute
from the OO model into a column in the DB model. Except for setting
its name (line 12), it also needs to define that the column belongs to the
table which corresponds to the class that defines the source attribute. The
commented-out assignment statement of line 13 cannot be used for this
purpose since it would illegaly attempt to assign the owningTable feature
of the column to a model element of an inappropriate type (OO!Class).
However, the special assignment operator in the task-specific language
implements the semantics discussed in Section 5.5.4, and thus in line 14
it assigns to the owningTable feature not the class that owns the attribute
but its corresponding table (calculated using the Class2Table rule) in the
DB model.

54

O 0 N O U1 AWN

el e el
a o~ W N = O

AW N =

rule Class2Table
transform c : OO0O!Class
to t : DB!Table {

t.name = c.name;

}

rule Attribute2Column
transform a : OO!Attribute
to ¢ : DB!Column {

c.name = a.name;
—--c.owningTable c.owningClass;
c.owningTable ::= c.owningClass;

}

Listing 3.18: A simple model-to-model transformation demonstrating the
special assignment statement

if (a > 0) {
"A is greater than 0".println();

}

else { "A is less equal than 0".println(); }

Listing 3.19: Example illustrating an if statement

3.5.4 If Statement

As in most programming languages, an if statement consists of a condi-
tion, a block of statements that is executed if the condition is satisfied
and (optionally) a block of statements that is executed otherwise. As an
example, in Listing 3.19, if variable a holds a value that is greater than 0
the statement of line 3 is executed, otherwise the statement of line 5 is
executed.

3.5.5 Switch Statement

A switch statement consists of an expression and a set of cases, and can be
used to implement multi-brancing. Unlike Java/C, switch in EOL doesn’t

55

0N hWN

0N U hWN

var i = "2";

switch (i) {

case "1" : "1".println();
case "2" : "2".println();
case "3" : "3".println();
case default : "default".println();

}
Listing 3.20: Example illustrating a switch statement

var i = "2";

switch (i) {

case "1" : "1".println();
case "2" : "2".println(); continue;
case "3" : "3".println();
case default : "default".println();

}

Listing 3.21: Example illustrating falling through cases in a switch state-
ment

by default fall through to the next case after a successful one. Therefore, it
is not necessary to add a break statement after each case. To enable falling
through to the next case you can use the continue statement. Also, unlike
Java/C, the switch expression can return anything (not only integers). As
an example, when executed, the code in Listing 3.20 prints 2 while the
code in Listing 3.21 prints 2,3,default.

3.5.6 While Statement

A while statement consists of a condition and a block of statements which
are executed as long as the condition is satisfied. For example, in List-
ing 3.22 the body of the while statement is executed 5 times printing the
numbers 0 to 4 to the output console. Inside the body of a while state-
ment, the built-in read-only loopCount integer variable holds the number

56

0NN O U hWN

var i : Integer = 0;
while (i < 5) {
—— both lines print the same thing
i.println();
(loopCount - 1) .println();
—-— lincrement the counter
i = 1i+1;

}
Listing 3.22: Example of a while statement

of times the innermost loop has been executed so far (including the cur-
rent iteration). Right after entering the loop for the first time and before
running the first statement in its body, loopCount is set to 1, and it is
incremented after each following iteration.

3.5.7 For Statement

In EOL, for statements are used to iterate the contents of collections. A
for statement defines a typed iterator and an iterated collection as well
as a block of statements that is executed for every item in the collection
that has a kind-of relationship with the type defined by the iterator. As
with the majority of programming languages, modifying a collection while
iterating it raises a runtime error. To avoid this situation, users can use
the clone() built-in operation of the Collection type discussed in 3.3.2.
Inside the body of a for statement two built-in read-only variables are
visible: the loopCount integer variable (explained in Section 3.5.6) and
the hasMore boolean variable. hasMore is used to determine if there are
more items if the collection for which the loop will be executed. For
example, in Listing 3.23 the col heterogeneous Sequence is defined that
contains two strings (a and b), two integers (1,2) and one real (2.5). The
for loop of line 2 only iterates through the items of the collection that are
of kind Real and therefore prints 1,2,2.5 to the standard output stream.

57

0NN O U hWN

var col : Sequence = Sequence{"a", 1, 2, 2.5, "b"};
for (r : Real in col) {

r.print ();

if (hasMore) {",".print ();}
}

Listing 3.23: Example of a for statement

for (i in Sequence{l..3}) {
if (i = 1) {continue;}
for (j in Sequence{l..4}) {
if (j = 2) {break;}
if (j = 3) {breakall;}
(1 + "," + j).println();
}
}

Listing 3.24: Example of the break breakAll and continue statements

3.5.8 Break, BreakAll and Continue Statements

To exit from for and while loops on demand, EOL provides the break and
breakAll statements. The break statement exits the innermost loop while
the breakAll statement exits all outer loops as well. On the other hand,
to skip a particular loop and proceed with the next one, EOL provides the
continue statement. For example, the excerpt of Listing 3.24, prints 2,1
3,1 to the standard output stream.

3.5.9 Throw Statement

EOL provides the throw statement for throwing a value as an EOLUSEREX-
CEPTION Java exception. This is especially useful when invoking EOL
scripts from Java code: by catching and processing the exception, the
Java code may be able to automatically handle the problem without re-
quiring user input. Any value can be thrown, as shown in Listing 3.25,
where we throw a number and a string.

58

1 throw 42;
2 throw "Error!";

Listing 3.25: Example of the throw statement

3.5.10 Transaction Statement

As discussed in Section 2.6, the underlying EMC layer provides support
for transactions in models. To utilize this feature EOL provides the trans-
action statement. A transaction statement (optionally) defines the models
that participate in the transaction. If no models are defined, it is assumed
that all the models that are accessible from the enclosing program partic-
ipate. When the statement is executed, a transaction is started on each
participating model. If no errors are raised during the execution of the
contained statements, any changes made to model elements are commit-
ted. On the other hand, if an error is raised the transaction is rolled back
and any changes made to the models in the context of the transaction
are undone. The user can also use the abort statement to explicitly exit a
transaction and roll-back any changes done in its context. In Listing 3.26,
an example of using this feature in a simulation problem is illustrated.

In this problem, a system consists of a number of processors. A pro-
cessor manages some tasks and can fail at any time. The EOL program
in Listing 3.26 performs 100 simulation steps, in every one of which 10
random processors from the model (lines 7-11) are marked as failed by
setting their failed property to true (line 14). Then, the tasks that the
failed processors manage are moved to other processors (line 15). Finally
the availability of the system in this state is evaluated.

After a simulation step, the state of the model has been drastically
changed since processors have failed and tasks have been relocated. To be
able to restore the model to its original state after every simulation step,
each step is executed in the context of a transaction which is explicitly
aborted (line 20) after evaluating the availability of the system. Therefore

59

O 0N O U AW N

NN NN 2 2 s 2 s e
W NRFR O WVWOWOWNOUL A WN = O

var system : System.allInstances.first();
for (i in Sequence {1..100}) {
transaction {
var failedProcessors : Set;

while (failedProcessors.size() < 10) {
failedProcessors.add (system.processors.random()) ;

}

for (processor in failedProcessors) {
processor.failed = true;
processor.moveTasksElsewhere () ;

}
system.evaluateAvailability () ;

abort;

Listing 3.26: Example of a for statement

after each simulation step the model is restored to its original state for the
next step to be executed.

3.6 Extended Properties

Quite often, during a model management operation it is necessary to asso-
ciate model elements with information that is not supported by the meta-
model they conform to. For instance, the EOL program in listing 3.27
calculates the depth of each Tree element in a model that conforms to the
Tree metamodel displayed in Figure 3.4.

As the Tree metamodel doesn’t support a depth property in the Tree
metaclass, each Tree has to be associated with its calculated depth (line

60

O 0 N O U1 AWN

e e e e e e
AU W N~ O

var depths = new Map;

for (n in Tree.alllnstances.select (t|not t.parent.isDefined()))

n.setDepth (0) ;
}

for (n in Tree.alllnstances) {
(n.name + " " + depths.get (n)).println();
}

operation Tree setDepth(depth : Integer) {
depths.put (self, depth) ;
for (c in self.children) {
c.setDepth (depth + 1);
}
}

Listing 3.27: Calculating and printing the depth of each Tree

Tree
-label:String

+parent

+children

Figure 3.4: The Tree Metamodel

12) using the depths map defined in line 1. Another approach would be to
extend the Tree metamodel to support the desired depth property; how-
evet, applying this technique every time an additional property is needed
for some model management operation would quickly pollute the meta-

model with properties of secondary importance.

To simplify the code required in such cases, EOL provides the concept
of extended properties. In terms of concrete syntax, an extended property
is a normal property, the name of which starts with the tilde character
(~). With regards to its execution semantics, the first time the value of
an extended property of an object is assigned, the property is created and

61

{

O 0N O U AW N

g
A W N = O

for (n in Tree.alllnstances.select (t|not t.parent.isDefined())) {
n.setDepth (0) ;
}

for (n in Tree.alllInstances) {
(n.name + " " + n.~depth) .println();
}

operation Tree setDepth (depth : Integer) {
self.~depth = depth;
for (c in self.children) {
c.setDepth (depth + 1);
}
}

Listing 3.28: A simplified version of Listing 3.27 using extended properties

associated with the object. Then, the property can be accessed as a normal
property. Listing 3.28 demonstrates using a depth extended property to
eliminate the need for using the depths map in Listing 3.27.

3.7 Context-Independent User Input

A common assumption in model management languages is that model
management tasks are only executed in a batch-manner without human
intervention. However, as demonstrated in the sequel, it is often useful
for the user to provide feedback that can precisely drive the execution of
a model management operation.

Model management operations can be executed in a number of run-
time environments in each of which a different user-input method is more
appropriate. For instance when executed in the context of an IDE (such
as Eclipse) visual dialogs are preferable, while when executed in the con-
text of a server or from within an ANT workflow, a command-line user
input interface is deemed more suitable. To abstract away from the differ-
ent runtime environments and enable the user to specify user interaction

62

statements uniformly and regardless of the runtime context, EOL provides
the IUserInput interface that can be realized in different ways according
to the execution environment and attached to the runtime context via
the IEolContext.setUserInput(IUserInput userInput) method. The I[UserIn-
put specifies the methods presented in Table 3.15.

Table 3.15: Operations of IUserInput

Signature Description

inform(message : String) Displays the specified message to
the user

confirm(message String, | Prompts the user to confirm if the

[default Boolean]) condition described by the message

Boolean holds

prompt(message String, | Prompts the user for a string in re-

[default : String]) : String

sponse to the message

promptlnteger(message
String, [default : Integer]) :
Integer

Prompts the user for an Integer

promptReal(message : String,
[default : Real]) : Real

Prompts the user for a Real

choose(message : String, op-
tions : Sequence, [default :

Any]) : Any

Prompts the user to select one of
the options

chooseMany(message : String
options : Sequence, [default :
Sequence]) : Sequence

Prompts the user to select one or
more of the options

As displayed above, all the methods of the IUserInput interface accept a
default parameter. The purpose of this parameter is dual. First, it enables
the designer of the model management program to prompt the user with

63

the most likely value as a default choice and secondly it enables a concrete
implementation of the interface (UnattendedExecutionUserInput) which
returns the default values without prompting the user at all and thus,
can be used for unattended execution of interactive Epsilon programs.
Figures 3.5 and 3.6 demontrate the interfaces through which input is re-
quired by the user when the exemplar System.user.promptinteger(’Please
enter a number’, 1); statement is executed using an Eclipse-based and a
command-line-based IUserInput implementation respectively.

User-input facilities have been found to be particularly useful in all
model management tasks. Such facilities are essential for performing op-
erations on live models such as model validation and model refactoring

"
(nteger value prompt w

Please enter a number

i (8] 4 ” Cancel]

Figure 3.5: Example of an Eclipse-based IUserInput implementation
El consale =0

Epsilon EMEN: il = - L=<_I> -

Please enter a number
1

Figure 3.6: Example of a command-line-based IUserInput implementation

64

but can also be useful in model comparison where marginal matching
decisions can be delegated to the user and model transformation where
the user can interactively specify the elements that will be transformed
into corresponding elements in the target model. Examples of interac-
tive model management operations that make use of the input facilities
provided by EOL are demonstrated in Sections 5.6 and 8.5

3.8 Task-Specific Languages

Having discussed EOL in detail, in the following chapters, the following
task-specific languages built atop EOL are presented:

e Epsilon Validation Language (EVL)

Epsilon Transformation Language (ETL)

Epsilon Generation Language (EGL)

Epsilon Wizard Language (EWL)

Epsilon Comparison Language (ECL)

Epsilon Merging Language (EML)

For each language, the abstract and concrete syntax are presented. To
enhance readability, the concrete syntax of each language is presented
in an abstract, pseudo-grammar form. Also provided is an informal but
detailed discussion, accompanied by concise examples for each feature of
interest, of its execution semantics and the runtime structures that are
essential to implement those semantics.

Descriptions of the abstract and concrete syntaxes of the task-specific
languages are particularly brief since they inherit most of their syntax and
features from EOL. As discussed earlier, this contributes to establishing a

65

platform of uniform languages where each provides a number of unique
task-specific constructs but does not otherwise deviate from each other.

To reduce unnecessary repetition, the following sections do not repeat
all the features inherited from EOL. However, the reader should bear in
mind that by being supersets of EOL, all task-specific languages can ex-
ploit the features it provides. For example, by reusing EOL’s user-input
facilities (discussed in 3.7), it is feasible to specify interactive model to
model transformations in ETL. As well, Native types can be used to ac-
cess or update information stored in an external system/tool (e.g. in a
database or a remote server) during model validation with EVL or model
comparison with ECL.

Following the presentation, in Chapters 4 — 9, of the task-specific lan-
guages implemented in Epsilon, Chapter 11 provides a brief overview of
the process needed to construct a new language that addresses a task that
is not supported by one of the existing languages.

66

