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An important step in the design of visual languages is the speci¢cation of the graphical
objects and the composition rules for constructing feasible visual sentences.The pre-
sence of di¡erent typologies of visual languages, eachwith speci¢c graphical and struc-
tural characteristics, yields the need to have models and tools that unify the design
steps for di¡erent types of visual languages. To this aim, in this paper we present a
formal frameworkof visual language classes. Each class characterizes a family of visual
languages based upon the nature of their graphical objects and composition rules.
The framework has been embedded in the Visual Language Compiler^Compiler
(VLCC), a graphical system for the automatic generation of visual programming
environments. r 2002 Elsevier Science Ltd. All rights reserved.
1. Introduction

THE WIDESPREADUSE of visual systems has brought the need to have tools supporting the
de¢nition and implementation of visual language environments [1^9], each based on a
particular visual language speci¢cation method. These speci¢cation methods come in
several forms, which makes it di⁄cult to systematically compare them and to abstractly
classify visual language.There has been an attempt to classify existing approaches based
on their expressive power. In particular, several formalisms have been compared and
classi¢ed according to their formal properties in order to provide a comprehensive
Chomsky-like hierarchy of visual languages [10].

Currently, there are three main approaches to visual language speci¢cation: the gram-
matical approach, the logical approach, and the algebraic approach. The grammatical
approach is based on grammatical formalisms extending the traditional rewriting me-
chanism used in string language speci¢cation, and uses geometric relationships between
the objects to be rewritten.The logical approach uses ¢rst-order mathematical logic or
other forms of logic from arti¢cial intelligence. Logical techniques are usually based on
spatial logics, which axiomatize the possible relationships between objects. Finally,
the algebraic approach uses algebraic speci¢cations consisting of composition functions
1045-926X/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.
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constructing complex pictures from simpler picture elements. In this paper we will
mainly rely on the grammatical approach.

In the last decades several techniques for modeling visual languages syntax have been
created, and these have been thoroughly analyzed and compared [11]. It turns out that two
main methods can be used to represent visual language sentences: relation- and attribute-
based.The former describes a sentence as a set of graphical objects and a set of relations on
them.The attribute-based representation instead conceives a sentence as a set of attribu-
ted graphical objects.

In this paper we present a framework of visual language classes. Each class characterizes a
family of visual languages in terms of the syntactic attributes of their graphical objects
and the spatial relations that can be used to compose visual sentences. As an example, a
graphical object in the family of £ow graph languages is a box with syntactic attributes
identifying speci¢c points on the box edge; typical relations are interconnections, which
are used to link graphical objects through their attaching points and are visualized by
polylines. On the other hand, a graphical object in the family of icon visual languages is
an iconwhose syntactic attributes are the coordinates of its centroid, and the relations are
spatial compositions (such as horizontal and vertical concatenation).These two examples
re£ect the two generally used modalities to compose visual sentences: by connecting
graphical objects, or by spatially arranging them. As a consequence, the classes of the
framework are distinguished in two categories: connection-based and geometric-based.

It is worth noting that most visual languages may be modeled according to di¡erent
classes of the framework.The appropriateness of the choice depends on how naturally
the chosen class describes the language and on speci¢c needs of the visual language de-
signer. In the paper we analyze awide range of existing visual languages and characterize
them according to the class that in our opinion is more appropriate. Also, there are spe-
ci¢c visual languages exhibiting syntactic features of di¡erent classes, such as box inclu-
sion, links between boxes, horizontal and vertical concatenations. Statecharts are a valid
example of this type of visual languages [12]. For this reason, we also introduce the con-
cept of hybridmodeling to integrate features from di¡erent classes.

The notion of visual language class is embedded in theVisual Language Compiler^
Compiler (VLCC) that inherits concepts and techniques of traditional compiler genera-
tion tools, like for instanceYACC [13], and extends them to the visual ¢eld [3, 4].VLCC
provides a visual language designer with visual assistance tools to help him/her during
the de¢nition of the graphical objects, the syntax and the semantics of the language being
designed.The visual language de¢nition tools are parametric with respect to the visual
language class.The designer is able to select a suitable class for the visual language being
designed and use the visual grammar editor for that class. For hybrid visual languages the
designer can select more than one class.The result of the visual language de¢nition pro-
cess consists of an integrated visual environment comprising a graphical editor, custo-
mized from the class-speci¢c editor template, and a compiler for the designed visual
language.

The paper is organized as follows. Section 2 introduces preliminary concepts under-
lying the proposed framework. Section 3 presents the classi¢cation framework, whereas
in Section 4 we provide a wide characterization of existing visual languages, classi¢ed
according to the proposed framework. Section 5 describes the VLCC system, and the
way the framework is implemented within it. Finally, concluding remarks are outlined
in Section 6.
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2. Visual Language Syntax

In this sectionwe provide an overviewon basic notions of visual language syntax used in
our framework according to the attribute-based approach [11]. A detailed discussion on
this topic can be found in [4].

Avisual language maybe conceived as a collection of visual sentences given by graphical
objects arranged in the two- or higher-dimensional space. Syntax of visual languages is
described through the graphical objects of the language (the vocabulary), the relations
used to compose the sentences, and a set of rules de¢ning the visual sentences belonging
to the language.The graphical objects of a visual language vocabulary are characterized
by a set of attributes that can be classi¢ed as graphical attributes, syntactic attributes, and semantic
attributes.

Graphical attributes characterize the appearance of the object.Typical graphical attri-
butes are position, size, shape, color, name, etc.The role of these attributes is to convey
information for the spatial arrangement of the object on the screen. In general, they do
not convey information about the syntactic correctness of the composed visual sentence.
Syntactic attributes are used to relate graphical objects in order to form visual sentences.
A set ofgraphical objects forms avisual sentencewhen all of their syntactic attributes have
been instantiated. Syntactic analysis techniques can be used to checkwhether the syntac-
tic attributes have been instantiated according to a proper set of relations, i.e. to check
whether a visual sentence belongs to a given visual language. It is worth noting that a
syntactic attribute can also be a graphical attribute. For example, the position of an icon
is both a graphical and a syntactic attribute. Semantic attributes are used to associate se-
mantics to a graphical object; they can be used either to provide a logic interpretation of a
visual sentence or to translate it into a target languageby using syntax-directed translation
schemes.

The types of syntactic attributes and the types of feasible relations that can be applied
to them to compose visual sentences are strongly related and characterize a visual language
class. As an example, let us consider the visual sentence in Figure 1 representing a £ow-
chart. It can be modeled as the interconnection of the graphical objects start, predicate,
function, and halt.

Each object has a pre-de¢ned set of attaching points as syntactic attributes. The
attaching points are connected through polylines that visually depict the control-
£ow relation among objects. The semantics associated to the attaching points of these
graphical objects de¢nes the direction of the connections.
Figure 1. A £owchart
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If ‘a’,‘b’, and ‘c’ indicate the three interconnections (start, predicate, function), (predicate, func-
tion) and (predicate, halt), respectively, then the syntactic attributes of the graphical objects in
the sentence of Figure 1 are instantiated as inTable 1.

Aclass of visual languages de¢nes a familyof visual languages of the same type. Aswe
will see, we can provide a common design framework for visual languages of the same
class.Thus, when designing a visual language it can be useful to ¢rst analyze its charac-
teristics in order to associate it to an appropriate class. For example, the visual sentence in
Figure 2 shows the layout of the front page of a two-column paper.This sentence belongs
to a visual language whose graphical objects are rectangular boxes. In this case, the co-
ordinates of the upper-left and lower-right corners of the rectangle can be used as syntac-
tic attributes.These convey information on the size and the position of a graphical object.
Moreover, visual sentences can be composed by using geometric relations, such as spatial
inclusion, horizontal and vertical arrangement.

The two examples shown in Figure1and 2, respectively, highlight the two basic mod-
alities to compose visual sentences, i.e. by explicitly connecting or by spatially arranging
graphical objects. In the ¢rst case, the syntactic attributes of graphical objects are instan-
tiated by means of link relations (the connections between them). In the second case, the
syntactic attributes are implicitly instantiated when a graphical object is placed in the
Cartesian plane, whereas the relations between two objects are derived from their relative
positions.
Table 1. An attribute-based representation of the £owchart in Figure 1

Object name attaching point1 attaching point 2 attaching point 3

start a F F
predicate a b c
function b a F
halt c F F

Figure 2. A sample box sentence



CLASSIFICATION FRAMEWORK FORVISUAL LANGUAGES 577
It is worth noting that the same visual language may be associated to di¡erent classes.
Hence, the language can be modeled according to di¡erent design frameworks. For ex-
ample, the graph shown in Figure 3 can be modeled either by explicitly interconnecting
nodes and arrows (both seen as graphical objects) or by arranging them in the space. In
the last case, the position of an end point of an arrow coincides with the coordinates of a
point on the circumference of a node.Here the implict relations among nodes and arrows
are geometrically derived.

The choice of an appropriate class to model a visual language may depend on its in-
trinsic characteristics. For example, a graph visual language is more naturally modeled
through a class de¢ned upon the connection-based visual sentence representation meth-
od rather than the one de¢ned upon the geometric-based method.

3. Classes of Visual Languages

In this section, we provide a frameworkof visual language classes. Classes can be divided
into two categories: connection- and geometric-based. These re£ect the two basic modalities
used to compose visual sentences, i.e. by connecting or spatially arranging graphical ob-
jects. In the following we characterize some basic classes belonging to these two cate-
gories. Each class of visual languages is completely speci¢ed by the type of syntactic
attributes associated to the graphical objects and the types of relations that can be used
on them to compose visual sentences.This classi¢cation allows us to characterize a wide
range of existing visual languages, as shown in Section 4.

3.1. Connection-based Classes

The visual sentences described by connection-based classes are formed by a set of inter-
connected graphical objects.The syntactic attributes of a graphical object can be single
attaching points or sets of attaching points. In the latter case, the sets can be discrete or
continuous (such as lines, areas), and we will refer to them as attaching regions.The value of
an attaching point or region participating to a connection is given by a unique identi¢er
for that connection (see Table 1). Table 2 summarizes the characteristics of some basic
connection-based classes that we will describe in this paper. It is worth noting that an
attaching point is a special case of an attaching region containing only one point.

Connections may be visualized in di¡erent ways. In this paper, we focus on two visua-
lization modalities: overlapping and linking. In the former, connections are visualized by
Figure 3. A sample graph



Table 2. Basic connection-based visual language classes

Class Realtions Syntactic attributes

Plex Any connection A pre-de¢ned number of attaching points
Graph Any connection A pre-de¢ned number of attaching regions
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overlapping attaching points/regions, whereas in the latter by explicit links between
them. Figure 4 shows two examples ofoverlapping [Figure 4(a) and (b)] and two examples
of link [Figure 4(c) and (d)]. Figure 4(a) shows two lines forming theV letter by overlap-
ping their attaching points, while the graphical objects in the puzzle of Figure 4(b) are
connected by plugging protrusions (‘knobs’) into correspondingly shaped indentations
(‘sockets’). Figure 4(c) shows two graphical objects of a £owchart whose attaching points
are connected through a link; similarly, the attaching regions (the circumferences) of the
two nodes in Figure 4 (d) are linked to form a simple graph.

The selection of a connection type depends on the characteristics of the visual lan-
guage under study. As an example, edge-labeled graphs and directed graphsmaybe mod-
eled as sets of nodes and edges where the circumference of a node (attaching region) can
be overlapped to one of the two end points of an edge (attaching point).The choice of this
representation is due to the fact that edges carry their own information, such as labels and
direction, and therefore they need to be represented through graphical objects. On the
other hand, unlabeled undirected graphs could be directly modeled as sets of nodes
joined through polylines (‘links’) representing relationships between nodes.

3.1.1. Class Plex

The classplex is suitable for modeling graph-structured visual languages, with the limita-
tion that each terminal graphical object can only have a ¢xed number of connections.

Syntactic attributes
Each graphical object has a pre-de¢ned set of points on its image as syntactic attri-

butes; these points are named attaching points.
According to the terminology introduced in [14], we will refer to graphical objects of

the class plex asNAPEs (NAttaching Point Entities) and use the integers in the subrange
(1, n) to identify the n attaching points of a NAPE.

Relations
The relations are plex interconnections denoted by JOINTand de¢ned as follows.

De¢nition 1. Given the NAPEs a and b, then aJOINT(h, k) b holds if and only if the
attaching point h of a is connected to the attaching point k of b:
Figure 4. Two types of connections: overlapping (a), (b) and link (c), (d)
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As an example, Figure 5(a) shows the graphical objects of a logical circuits language,
whereas a simple logical circuit composed by joining the attaching points of the NAPEs
is depicted in Figure 5(b).TheJOINTrelation is visualized through links.

Table 3 instantiates the attaching point of NAPEs in the visual sentence with the link
values.

3.1.2. Class Graph

The class graph is suitable for modeling general graph-structured visual languages.
Syntactic attributes
Each graphical object has a pre-de¢ned set of regions on its image as syntactic attri-

butes; these attributes are named attaching regions.
Relations
The relations are graph interconnections, denoted by JOINTand de¢ned as follows.

De¢nition 2. Given the graphical objects a and b; then a JOINT(h, k) b holds if and only
if the attaching region h of a is connected to the attaching region k of b:

Figure 6 shows a simple lattice. The only graphical object is the node that has
two attaching regions, the upper semi-circumference (light line) and the lower semi-
circumference (thick line).

TheJOINTrelation is visualized through links joining the lower semi-circumference
and the upper semi-circumferences of two nodes, respectively.

3.2. Geometric-based Classes

In geometric-based classes of visual languages a visual sentence is described as a set of
graphical objects spatially arranged in the Cartesian plane. Several spatial composition
rules can be used to form visual sentences. Examples include metrics-based relations,
Figure 5. NAPEs of a logical circuits language (a) and a simple visual senetence (b)

Table 3. Instantiation of the attaching point of NAPEs in Figure 5(b)

Object name attaching point1 attaching point 2 attaching point 3

and F F a
or a b F
not F b F



Figure 6. A simple lattice
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such as horizontal and vertical concatenationa, spatial inclusion, adjacency and intersec-
tion.The syntactic attributes of a graphical object are the coordinates of a set of points
suitable to relate the objects according to a spatial composition rules above. Syntactic
attributes are automatically instantiated when placing the graphical object in the Carte-
sian plane.

As an example,Venn diagrams, used to depict set relations, such as inclusion and inter-
section, can be modeled according to geometric-based classes (see Figure 7). In this case,
a set element is depicted as an icon and it is represented by its position, whereas a set is
depicted as a circle and it is represented by the coordinates of its center and any point on
the circumference.

It is worth noting that although other features could be considered as syntactic attri-
butes (for example, a circle couldbe syntacticallydescribedby the coordinates of its center
and the measure of its radius), the use of the coordinates of points in the Cartesian plane
makes the de¢nition of geometric-based classes independent on the particular shape of
the graphical objects.

Table 4 summarizes the descriptions of the basic geometric-based classes of visual
languages.

3.2.1. Class String

This class is suitable for modeling all the string languages. It can be seen as the reduction
of a geometric class to the linear case.The graphical objects of a string language are tex-
tual charactersb.

Syntactic attributes
The only syntactic attribute of a character is an integer denoting its position within a

string.
Relations
The only relation is the string concatenation, denoted by CONC and de¢ned as follows.
aThe term concatenation as used in this paper refers to any spatial arrangement of graphical objects not
intersecting their areas.

b For sake of uniformity, in the class string characters are considered as graphical objects.



Table 4. Basic geometric-based classes of visual languages

Class Relations Syntatic attributes

String String concatenation The position of the symbol in the string
Iconic Any spatial concatenation

and overlapping
The position of the icon in the Cartesian plane

Box Any spatial composition The upper-left and the lower-right points of the box

Figure 7. A sampleVenn diagram
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De¢nition 3. Given the characters a and b with positions i and j, respectively, then
a CONC b holds if and only if j ¼ i þ 1:

3.2.2. Classic Iconic

The graphical objects of the class iconic are icons. An icon is conceived as an image
within a box of ¢xed size.

Syntactic attributes
Each icon has one syntactic attribute, which is a pair of integers denoting the coordi-

nates of the icon in a grid of cells of the same size as an icon bounding box.
Relations
The relations are iconic spatial compositions, de¢ned as follows.

De¢nition 4. An iconic spatial composition REL consists of a set of pairs of integers
(m, n). Given a relation REL and two icons a and bwith syntactic attributes (x, y) and (h, k),
respectively, then a REL b holds if and only if ( (m, n)A REL such that h ¼ xþ m and
k ¼ yþ n:

The spatial arrangements produced by such compositions represent either spatial con-
catenations or overlapping. In particular, the overlap of two icons is denoted by the rela-
tion Overlap�{(0,0)}. Other examples of spatial concatenations follow:

Right-step � fð1; 0Þg

NorthEast-step � fð1; 1Þg

Right � fðm; nÞjm > 0g



Figure 8. Two iconic sentences
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Figure 8 shows two simple iconic sentences: the ¢rst one, taken from theHeidelberg Icon
Set [15], describes the operation ‘delete string’, while the second one, taken from [5], re-
presents the operation ‘display a text ¢le’. In both cases the icons are related through the
right-step spatial concatenation.

3.2.3. Class Box

The graphical objects of this class are characterized by their bounding boxes, i.e.
they can be syntactically described and manipulated through their bounding box,
whatever the shape of the object is. The main di¡erence between the class box
and the class iconic is that the former allows bounding boxes with variable size.
This leads to di¡erent de¢nitions of syntactic attributes and relations within the two
classes.

Syntactic attributes
Each graphical object has two syntactic attributes which are pairs of integers denoting

the coordinates of the upper-left and lower-right points of its bounding box.
Relations
The relations are box spatial compositions, which generalize the iconic compositions.

However, unlike the iconic case, a box spatial composition cannot be de¢ned indepen-
dently from the syntactic attributes of the ¢rst argument, as this de¢nes an area of variable
size. In order to de¢ne a box spatial composition RELwith respect to a boxa, we use two
functions ULREL (m; n; m1; n1) and LRREL(m; n; m1; n1) that map the coordinates of the
upper-left (m; n) and lower-right (m1; n1) points of the bounding box of a onto sets of
points.

De¢nition 5. Given a box a with syntactic attributes (x; y) and (x1; y1) and a box b with
syntactic attributes (h; k) and (h1; k1), then a REL b holds i¡ (h; k)AULREL(x; y; x1; y1)
and (h1; k1)ALRREL(x; y; x1; y1).

In other words, aREL b holds if and only if the upper left and the lower right points of
b are contained respectively in the two areas calculated on the syntactic attributes of a
through the functions ULREL and LRREL (see Figure 9).

The above de¢nition of composition yields three types of spatial arrangements:
inclusion, intersection and spatial concatenation. As an example, given a box a
with syntactic attributes (x; y) and (x1; y1), the relations INCLUDE, INTERSECT
and the spatial concatenations RIGHT and DOWN with respect to a are de¢ned
below.



Figure 9. Upper-left (UL) and lower-right (LR) constraints of a box relation REL
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INCLUDE
The relation a INCLUDE b holds if the bounding box of b is contained in the bound-

ing box of a:

ULINCLUDEðx; y;x1; y1Þ ¼ fðm; nÞjxrmox1; y1onryg

LRINCLUDEðx; y;x1; y1Þ ¼ fðm; nÞjxomrx1; y1rnoyg
It is worth noting that this de¢nition includes the case when the boxes a and b overlap.

INTERSECT
The relation a INTERSECT b holds if the bounding boxes of a and b have a non-

empty intersection:

ULINTERSECTðx; y;x1; y1Þ ¼ fðm; nÞjmrx1; nZy1g

LRINTERSECTðx; y;x1; y1Þ ¼ fðm; nÞjmZx; nryg
It is worth noting that if a INCLUDE b holds, then also a INTEREST b holds.

RIGHT
The relation aRIGHT b holds if the upper-left point of the boundingboxof b is on the

right of the right edge of the bounding box of a:

ULRIGHTðx; y;x1; y1Þ ¼ fðm; nÞjm > x1g
DOWN

The relation aDOWN b holds if the upper-left point of the boundingboxof b is below
the lower edge of the bounding box of a:

ULDOWNðx; y;x1; y1Þ ¼ fðm; nÞjnoy1g
The functions LRRIGHT and LRDOWN can be left unspeci¢ed in the de¢nition of the
relations RIGHTand DOWN.

As an example, Figure 10 shows a sample box visual sentence. The relation
INTERSECT holds between the boxes b and c; these boxes are both included in the
box a; ¢nally, the relations RIGHTand DOWN hold between the box a and the boxes e
and d; respectively.

Well-formed two-dimensional arithmetic expressions can be modeled according
to this class. As a matter of fact, each expression can always be modeled as a set of



Figure 10. Abox visual sentence

Figure 11. An arithmetic expression and its box structure
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boxes which are composed according to the spatial concatenation and the inclusion
relations. As an example, an arithmetic expression and its box decomposition are
shown in Figure 11.

ffiffiffiffiffiffiffiffiffiffiffi

xþ y
p þ z

2
� t

3.3. An Inclusion Hierarchy of Visual language Classes

The classes of visual languages described in the previous subsections can be represented
in an inclusion hierarchy that expresses the generalization^specialization relation be-
tween them, as shown in Figure 12.

Abstract classes are written in italics. The most general connection-based class in
graph, whereas the most general geometric-based class is Box.The Class plex can be seen
as a specialization of the class graph where attaching regions contain single points; the
class Iconic specializes the more general class box (icons can be represented by boxes of
¢xed size), while the class String can be seen as the specialization of the class iconic to the
linear case.

3.4. Hybrid Classes of Visual Languages

Avisual language can be modeled by using one of the basic classes de¢ned above or by
integrating features from more of them. Indeed, a visual language may present graphical



Figure 12. VL classes inclusion hierarchy

Figure 13. A graphical object and its use in hybrid modeling
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objectswith properties derived fromdi¡erentbasic classes.As an example, let us consider
a graphical object with one input and one output port and that might contain other
graphical objects (see Figure 13). This object can be modeled by assigning it the upper
left and lower right points of its bounding box and an attaching point for each port as
syntactic attributes. In this case we say that the graphical object has been modeled in a
hybrid way according to the classes box and plex.

The concept of hybrid modeling allows to capture and extend the description capabil-
ities of the basic classes ofour framework.The introduction of thismodeling paradigm is
motivated by the necessity to support the de¢nition of complex visual languages, includ-
ing many practical visual languages like Statecharts, UML diagrams, etc. As an example,
let us consider the graphical object 1 of the Statechart sentence shown in Figure 14. In-
tuitively, such an object needs the syntactic attributes de¢ned in both the classes graph
and box.The former should be used to express link relationships, such as connections
between states, whereas the latter should allow to de¢ne spatial relationships such as the
containment between states and superstates.



Figure 14. A statechart sentence
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Another important issue to be taken into account when designing complex visual lan-
guages is the concept of hierarchical languages, that is, visual languages whose graphical
objects can be annotated by visual sentences from possibly di¡erent visual languages.To
this aim, in addition to the speci¢c relations, a class may include a special relation that
associates a visual sentence to a graphical object. In the following, we will refer to this
type of relation as the annotate relation. As an example, in the £owchart in Figure 1 the
annotate relation can be used to associate each node with a piece of code describing
the action of condition to be executed.The annotate relation should not be confused with
the include relation of the class box, since it establishes a relationship that is logical
rather than spatial. Moreover, when used recursively, the annotate relation enables the
speci¢cation of nested visual languages

4. Classi¢cation of ExistingVisual Languages

In this section we provide an overview of visual languages existing in the literature.We
have also given a possible classi¢cation for them according to our framework of classes.

4.1. Graph

The class graph may be used to describe the structure of a number of graph languages.
Many of these languages have been used within software engineering methodologies.
Examples include languages based on data £ow graphs, state transition diagrams, Petri
nets, entity^relationship diagrams, SADTdiagrams, Class and Object diagrams.

In data £ow graph languages the operations are typically associated to boxes and the
data £ow along the arrows connecting them. In general, graphical objects of such lan-
guagesmay present avariable number of attaching points (i.e. attaching regions), as in the
case of Data Flow Diagrams used for specifying the data £ow in software systems, or in
the case of PegaSys [16] which is a diagrammatic system designed to provide a program-
ming environment where all steps of software life cycle are supported bygraphical inter-
action languages. Phred [17] is a visual parallel programming environment that allows a
software designer to create Phred programs, to statically analyze them for determinacy,
and to interpret them. A Phred program is composed of a control graph, a data
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£owgraph, and a set of node interpretations represented by procedure speci¢cation (writ-
ten in C language).

Transition diagrams of ¢nite state automata are another typical example of graph lan-
guages.The graphical objects of such languages are nodes and arcs representing the states
and the transitions of the automaton, respectively.The attaching region of a node is given
by its circumference, while an arc has two attaching points corresponding to its end
points. An example of language based on state transition diagrams has been proposed
byJacob [18], and it is used for specifying user interfaces in a graphical manner.

SADT [19] diagrams have been used in several water-fall software engineering meth-
odologies to specify the functional part of a system,which has often to be integratedwith
the data speci¢cation. SADTdiagrams are composed of rectangular boxes, with arrows
entering left and upper sides, and arrows leaving right and bottom sides. Boxes represent
activities of processes, arrows entering the left side represent the activity’s inputs,whereas
those leaving the right side represent its outputs. The activity is carried out by one or
more actors, which are represented through arrows entering the box from the bottom
side. The actors can be human, software systems, etc. Moreover, the activity has to be
carried out according to constraints that are represented through arrows entering the
upper side.The outputs of a box can be input to another box representing a successive
activity. In order to face scale-up problems, SADTcan be speci¢ed in a hierarchical fash-
ion. In other words, a macro-activityA can be detailed by annotating its corresponding
box with another SADTdiagram with boxes a1; a2;y,an representing the micro-activ-
ities composing A: Obviously, the hierarchical decomposition must obey to some con-
straints, such as the inputs and outputs of A must correspond to inputs and outputs of
some box in the detailed SADTof A:

A sample of SADTdiagram is depicted in Figure 15.
Manyvisual programming systems are based on the Petri nets formalism for specifying

multimedia, concurrent, and real-time systems. For example, the MOPS-2 system [20]
uses colored Petri nets to allow parallel systems to be constructed and stimulated in a
visual manner.TheVERDI system [21] uses a form of Petri nets for specifying and simu-
lating distributed systems: the speci¢cation is animated by moving tokens around the
network. Cabernet [22] is a visual environment based on high-level Petri nets [23] de-
signed to support the speci¢cation and veri¢cation of real-time systems. An example of
graph language used to specify multimedia applications is given by the teleaction object
(TAO) [24]. A sentence from this language is shown in Figure 16. There graph nodes
Figure 15. The structure of an SADTdiagram



Figure 16. The structure of aTao hypergraph
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represent text, image, video, motion, or composed multimedia objects, and are intercon-
nected through synchronization, attachment, spatial, or annotation links.

4.2. Plex

The class plex can be used to describe the structure of visual languages like £owcharts,
chemical structures, Boolean and electric circuits, and so on. For instance, in £owchart
languages each graphical object (boxes, diamonds, etc.) has a pre-de¢ned number of at-
taching points (two for boxes, three for diamonds, etc.), and graphical objects can be
connected only through links visualized as polylines. Examples of £owchart-based lan-
guages include (First Programming Language) (FPL), [25], particularly suited to help
novices in learning programming since it eliminates syntactic errors, OPAL [26] that
allows doctors to enter knowledge about cancer treatments into an expert system, and
Pict [27] that uses £owcharts with boxes annotated by color pictures instead of text.

Also data £ow graph languages whose boxes have a ¢xed number of attaching points
can be modeled according to the plex syntax.This is in case, for example, of PROGRAPH
[28] which is a structured, functional language introduced to solve comprehension
problems of conventional textual functional languages, and InterCONS [29] which is a
data £ow system developed in Smalltalk that supports programming by example.

Nested data £ow graph languages can be also modeled according to the class plex,
where the nesting is obtained by using the relation annotate. Usually, in a nested data-
£owgraph each node represents an operator (function), an operand (variable), or another
directed graph represented by an iconic name. Examples include the programming by
example system Fabrik [30] developed in smalltalk and used for constructing user inter-
faces (see Figure 17 for an example of sentence in Fabrik) and the commercial product
Lab-VIEWc running on Macintosh and used for controlling external devices. Lab-
VIEW provides procedural abstraction, control structures, and many useful primitive
c National Instruments, LabVIEW,12109 Technology Blv, Austin,Texas, 78727.



Figure 17. An example of Fabrik diagram

CLASSIFICATION FRAMEWORK FORVISUAL LANGUAGES 589
components such as knobs, switches, and mathematical functions. Show andTell [31,32]
is a visual programming language for de¢ning interfaces of relational databases (scheme
and queries). AShow andTell database scheme is de¢ned by a two-dimensional layout of
base boxes, while a query is de¢ned by a data £ow program.

Other general-purpose nested data £ow visual programming language systems are
Hyer£ow [33] and its derivatives ProtoHyper£ow [34] andHF/PP [35].The syntaxof these
languages consists of boxes and arrows, a box representing a process, and an arrow re-
presenting a data £owbetween processes. Boxesmaycontain data £owgraphs for de¢ning
new functions and to build conditionals. Hyper£ow and HF/PP are designed as visual
languages for a pen-based multimedia system, while ProtoHyper£ow is implemented on
a traditional mouse/CRT-based system.

Another visual language that can be modeled by the class plex has been proposed
by Karsai [36]. It consists of a con¢gurable visual programming environment that can
be customized for various application domains. Also the BLOX languages proposed by
Glinert [37] are plex languages. Visual sentences are composed by joining graphical
objects using the usual jigsaw-puzzle ‘lock and key’ metaphor to plug protrusions
(‘knobs’) into correspondingly shaped indentations (‘sockets’) so that the two justaposed
tiles interlock. Moreover, BLOX substructures can be encapsulated (nested) into BLOX
elements. Languages for representing logical circuits and structured programs (in a
similar way to nested £owchart, where function boxes may hide sub-£owcharts) have
been de¢ned using the BLOX methodology.

4.3. Box

The class box can be used to describe high-level interface languages for geographical
information systems. For example, Cigales [38] is a graphical query language based upon
spatial queryby example.Thebasic idea of this language is to express a querybydrawing a
pattern according to the user’s mental model of the data to be retrieved.The graphical
objects of this language are geometric objects, such as lines and areas, while queries
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(sentences) are composed by means of spatial rules, such as inclusion, intersection, and
adjacency.

Atypical example of box language is given by theNassi^Schneidermann diagrams [39]
used to express computer programs. In this formalism each program is associated to a
box. The boxes also delimit program blocks. Special box notations are dedicated to
control statements. As an example, an IF statement is expressed by using a box divided
in several sections: an upper triangle contains the test condition, whereas the rest of the
box is divided into columns, each containing a possible result for the test condition and
the associated code. An example of program expressed through the Nassi^Schneider-
mann notation is given in Figure 18. Notice that the nesting of programs is realized
through the relation annotate.

Another example of box visual language is given in [40], where a visual calendar is
used to specify authorization policies in task based environments (see Figure 19). Each
calendar cell may include one or two authorizations. In the case it contains two of them,
these are considered as right-adiacent.

4.4. Iconic

A number of visual languages have been proposed in the literature which may be mod-
eled according to the class iconic. For example, HI-VISUAL [41] provides an iconic
Figure 18. A Nassi-Schneidermann diagram



Figure 19. Avisual language for specifying security policy
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framework to construct data £ow programs by composing icons in a two-dimensional
display screen according to pre-de¢ned rules. Media Streams [42] is an iconic language
system which enables users to create multi-layered iconic annotations of streams video
data. The SIL-ICON [43] compiler is a system for specifying, interpreting and
prototyping icon-oriented systems. It uses context-free grammar augmented with spatial
operators to de¢ne a visual language and allow iconic sentences to be constructed by
arranging icons in a two-dimensional fashion and parsed and interpreted according
to the speci¢cation rules of the language. Minspeak [44] is an iconic language system
used in augmentative communication by people with speech disabilities. It consists of
multi-meaning one-dimension iconic sentences which are used to retrieve messages
(words or word sequences) stored in the memory of a microcomputer. A built-in speech
synthesizer allows to generate the voice output. An example of iconic sentence of Min-
speak representing the concept fear is shown in Figure 20.



Figure 20. An iconic sentence of Minspeak
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4.5. Hybrid

Box-and-graph visual languages are an example of hybrid modeling obtained by group-
ing features of the classes box and graph. A graphical object has both the upper-left and
lower-right points of its bounding box and a pre-de¢ned number of attaching points
and/or regions as syntactic attributes.The relations that can be composed to form visual
sentences are both geometric (spatial inclusion, horizontal and vertical concatenation,
etc.) and connection based. Statecharts [12, 45] are an example of language that can be
modeled as box-and-graph. Statecharts are an extension of state transition diagrams
introduced to specify large and complex reactive systems, that is, event-driven
continuously reacting to stimuli systems.

The main features of statechart transition diagrams are AND/OR decomposition
of states, inter-level transitions, an a broadcast mechanism for communication
between concurrent components. Graphical objects representing states or AND/OR
decomposition of states may contain nested statecharts. Examples of visual languages
based on statechart formalism includeMiroØ [46] which is a language for de¢ning security
constraints (in particular user accesses to ¢les) in operating systems, and StateMaster [47]
which is a visual system for programming graphical user interfaces.

The Uni¢ed Modeling Language (UML) [48] is a set of graphical languages used for
specifying and modeling systems. It represents a widely accepted standard in the context
of object-oriented software engineering methodologies.

An example of class diagram is given in Figure 21. It shows a number of classes
connected to the class Pump through the Composition relation.The state diagram for the
class Pump is shown in Figure 22. This can be represented in our framework by using
the relation annotate between the class Pump and its associated state diagram. Notice that
State Diagrams in UML are hierarchical, meaning that each state can have nested State
Diagrams to describe the details of its dynamic behavior.

TheUML diagrams can be modeled by using they hybrid paradigm. In fact, although
the graph component is predominant in their structure, there are some plex and box
features in them. For example, there are cases inwhich arrows cannot be simply modeled
as interconnection relations, but they need to be represented as tokens with ¢xed
attaching points corresponding to their start and end points. This is the case of the
arrows for specifying composition relations in UML Class diagrams. Moreover, UML
state diagrams present some box features. In fact, as said above they can have macro-
states whose behavior is detailed through another state diagram. These sentences can
be visually modeled through boxes including inner state transition diagrams.



Figure 22. The State Diagram for the class Pump of Figure 21

Figure 21. An example of class from a class diagram.
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5. TheVLCC System

In this section, we show how to implement a visual language according to a given class
by using the Visual Language Compiler-Compiler (VLCC) system [3]. VLCC is a tool
for the automatic generation of visual programming environments implementing visual
languages. Aprototype of theVLCC system has been implemented usingobject-oriented
technology under MSWindows98.TheVLCC supports the language designer in the de-
¢nition of a visual language by assisting him/her in the speci¢cation of the graphical
objects, the syntax and the semantics of the language.

The main components of VLCC are the Grammar Editor (GE) and theVisual Program-
ming Environment Generator (VPEG) (see Figure 23). GE supports the language designer
during the speci¢cation of the visual aspects (the graphics) and the logical features
(the syntactic attributes) of the language terminals, both accomplished through a Symbol
Editor. Moreover, GE allows the designer to de¢ne the syntax and the semantics of
the visual language, either textually by entering a YACC-like speci¢cation through a



Figure 23. TheVLCC architecture
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text editor or graphically through aVisual Production Editor. Starting from the supplied
language speci¢cation,VPEGgenerates an integrated visual programming environment
consisting of a graphical editor for the de¢nition of the visual sentences and a compiler
for analyzing and translating them.Each newVLCCgenerated environment is structured
in three levels:

* the graphical interface,
* the visual language class implementation,
* the language compiler and tokens.

Each level is implemented by a set of C++ classes that inherit or use classes from the
higher levels.The ¢rst level is common to all the visual language environments generated
byVLCC: it mainly contains abstract C++ classes implementing the general skeleton of
the graphical editor. As an example, this module includes virtual functions de¢ning the
way the graphical editor draws a token, and functions implementing command menus
such as copy, paste, undo, etc.

The second level implements a given visual language class, and it is shared
among all the VLCC environments generated for visual languages modeled
according to that class. This module contains classes implementing the structure
of visual sentences (i.e. the syntactic attributes and the feasible relations). The current
version of VLCC implements all of the classes of the framework presented in this paper.
However, the object-oriented architecture of the system makes it easy to add implemen-
tations of newly de¢ned classes. So far theVLCC systems has been used to implement
several practical visual languages, like ¢nite state automata, semi-structured £owcharts,
UML diagrams, etc.

The third level is speci¢c to eachvisual language and contains C++classes implement-
ing the compiler and tokens for that language. The compiler is based on an e⁄cient
LR-like methodology [4]. A token contains information regarding both its graphical
aspect and the association between its syntactic attributes and its image. Moreover, the
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C++ class implementing a token inherits all the functions for its graphical manipulation
from the above levels.

While the ¢rst two levels are pre-de¢ned and implemented in dynamic libraries,
and in the third level is built by a visual language designer through the use of theVLCC
Grammar Editor. Finally, the executable code for the visual programming environment
Figure 24. TheVLCC generated Flow-Chart environment

Figure 25. TheVLCC generated ER environment



Figure 26. TheVLCC generated UML environment
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is obtained by compiling the C++ code implementing the third level with the
pre-de¢ned libraries.

The generated graphical environment allows a user to draw and compile visual
sentences through two palettes, one used to set the language graphical objects on the
screen and one to instantiate their syntactic attributes.The latter also includes button to
annotate graphical objects with textual or visual sentences.

As an example, Figures 24^26 show three VLCC-generated visual programming
environments implementing semi-structured £owcharts (Plex), Entity^Relationship
(ER) diagrams (Graph), and UML diagrams (Hybrid), respectively.

Figure 24 also shows the result of the compilation process, represented by the Pascal
code corresponding to the £ow-chart, which is shown in the output window to the
right of the main window. Similarly, the ER diagram of Figure 25 is compiled
into the SQL code shown in Figure 27. Finally, the compiler for the UML environment
checks the syntactic and semantic correctness of the diagrams and can produce either
intermediate UML design diagrams or the skeleton of the ¢nal C++ code for the system
being modeled.

6. Concluding Remarks

In this paper we have presented a classi¢cation framework for visual languages, and the
VLCC system as a visual language compiler generator based upon the framework.We
believe that this framework can play an important role in the design of visual languages.
In particular, it provides a visual language designer with guidelines to analyze the
characteristics of the language, and to associate it to an appropriate class. In this way,
the designer can exploit the pre-de¢ned design framework of the selected class, and
the customized visual design environments of VLCC providing speci¢c support for



Figure 27. The SQL code corresponding to the ER diagram in Figure 25
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the visual languages of the chosen class.We have also provided awide characterization of
existing visual languages by modeling each of them throughwhat we feel to be the most
appropriate class from the framework.

It is worth noting that enhancing our framework through hybrid and hierarchical
paradigms opens the way to model any visual language. In fact, no matter how complex
the visual language is, we can always derive an hybrid class to model it.This might also
require adding new speci¢c classes to the framework. For example, in order to model
ContourMapswe have to extend the classGeometric to derive a newclass having graphical
objects of di¡erent geometric shapes, modeled through a vector of points.

Several other visual language tools have been recently proposed which provides tem-
plates for classes of visual languages. A recent proposal refers to categorytheory to character-
ize families of connection-based languages in terms of morphims among elements [49].
Moreover, categories of languages were de¢ned according to an Entity^Relationship
approach in [50].

Metamodel approaches are gaining interest in the visual language community,
following their success in de¢ning the visual languages of UML.A metamodel approach
is implicit in most generators of diagrammatic editors.Most such generators are based on
the translation of some formal syntax into a set of procedures controlling user inter-
action, and on constructing the semantic interpretation of the diagram in a parsing
process. Examples of such tools where the formal syntax is some variant of graph
rewriting are Diagen [51] based on hypergraph rewriting, and GenGEd [52].

In MetaBuilder [53], a designer de¢nes a new visual language by drawing its metamo-
del class diagram, fromwhich an editor is automaticallygenerated.MetaBuilder does not
provide support for the management of textual constraints, nor does it de¢ne basic
metamodels for families of diagrammatic languages.
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The GenIAL tool [54] allows the de¢nition of connection-based languages starting
from two basic classes:Entity andConnection. A designer specializesConnections by de¢ning
their arities and orientations.Moreover, attributes taking values in a set of basic primitive
types can be associated with each token, thus de¢ning classes of visual terms. Rules of a
visual rewriting systems are interactively de¢ned in accordance with the class of each
term; conditions and a global check are expressed a textual form. An incremental editor
is automatically generated from the speci¢cation.

In future we aim to use this design methodology for designing other practical visual
languages.This will let us de¢ne new hybrid classes withinVLCC and to further specia-
lize its parametric tools. As we increase specialization within the framework and in
VLCC, this should yield faster prototyping of complex visual languages. The uniform
and fast prototyping of visual languages can also provide bene¢ts to the construction
of metacase environments. In fact, although visual language compiler generators
promise to be suitable metacase environments, they have not been widely used to this
aim due to the complex visual language design process to be undergone for generating
CASE tools.The use of our prede¢ned design framework and class-speci¢cation design
tools can considerably improve this process.Moreover, multimedia andweb engineering
are causing a proliferation of design methodologies. Since these ¢elds require adaptable
methodologies and tools, we would like to model and implement visual languages of
emerging web and multimedia engineering methodologies within our framework.

Another appealing use of our framework is in the context of multimedia databases. In
particular, other than using the framework to construct database design notations, the
framework can be used to design visual query languages. In fact, the complex nature of
multimedia data has encouraged researchers to exploit visual query languages for query-
ing image, sound and video based upon their content. Moreover, we would like to in-
vestigate how to manage features like gestures and time constraints within our frame
work, to enable the modeling the dynamic visual languages, which will broaden the
range of applications.
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