Modelling Languages: (mostly) Concrete (Visual) Syntax

Hans Vangheluwe

http://msdl.cs.mcgill.ca/
The Structure of Modeling Languages

Bran Selić

Modelling Languages/Formalisms
Syntax and Semantics

Concrete Formalism F
Modelling Languages/Formalisms
Syntax and Semantics
Textual Languages

“This sentence is very short”

• Individual letters in an alphabet
• Combined into words
• Combined into sentences in a language

• Valid letters in words specified by regular expressions
• Valid words in a language specified by a grammar

• letters/words are combined by “is to the right of”
The Spoofax Language Workbench

Rules for Declarative Specification of Languages and IDEs

Lennart C. L. Kats
Delft University of Technology
l.c.l.kats@tudelft.nl

Eelco Visser
Delft University of Technology
visser@acm.org

syntax-directed editor
(textual concrete syntax)
syntax-directed editor
(visual concrete syntax)
Visual Languages
A Classification Framework to Support the Design of Visual Languages

G. Costagliola*, A. Delucia†, S. Orefice‡ and G. Polese*
Graph

Visual Languages
Connection Types

(a) (b) (c) (d)
Iconic
\[\frac{\sqrt{x+y+z}}{2} - t \]
Visual Language Classes

- Connection
 - Graph
 - Plex

- Geometric
 - Box
 - Iconic
 - String
Hybrid Languages

<table>
<thead>
<tr>
<th></th>
<th>SUN</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THU</th>
<th>FRI</th>
<th>SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td></td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAN 97</td>
<td>5</td>
<td>12</td>
<td>19</td>
<td>26</td>
<td>27</td>
<td>30</td>
<td>31</td>
</tr>
</tbody>
</table>

POLICY TIER
DEFINITION TIER

CALENDAR-FORM METAPHOR
COMBINATION LOCK METAPHOR

Visual Languages
Syntax-directed Visual Editors: model behaviour
Syntax-directed Visual Editors: model behaviour
Generate Syntax-directed Visual Editors

Visual Languages
Syntax-directed Visual Editors: freehand (early stages of multi-domain project)
Different Media:
Gestural Interaction, Sound, ...
The “Physics” of Notations: Towards a Scientific Basis for Constructing Visual Notations in Software Engineering

Daniel L. Moody, Member, IEEE
Introduction

- Visual notations pre-date textual ones
- Visual notations are important for Modelling and Software Engineering
- Humans are excellent pattern recognizers
- Need cognitively efficient and effective notations.

Cognitive effectiveness = speed, ease and accuracy with which a representation can be processed by the human mind
Introduction/Rationale

Visual notations are often introduced without underlying theory or rationale.

```
Physics'' of Notations
```

Many visual notations for same concepts.

No rigorous way to compare effectiveness and hence no clear design goal.
Communication Theory

``Physics'' of Notations
Encoding: 8 visual variables to (graphically) encode information

<table>
<thead>
<tr>
<th>PLANAR VARIABLES</th>
<th>RETINAL VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Position</td>
<td>Shape</td>
</tr>
<tr>
<td>Vertical Position</td>
<td>Brightness</td>
</tr>
<tr>
<td></td>
<td>Size</td>
</tr>
<tr>
<td></td>
<td>Orientation</td>
</tr>
<tr>
<td></td>
<td>Colour</td>
</tr>
<tr>
<td></td>
<td>Texture</td>
</tr>
</tbody>
</table>

- **Shape**: circle, square, triangle
- **Brightness**: low, medium, high
- **Size**: small, medium, large
- **Orientation**: 0°, 45°, 90°
- **Colour**: red, green, blue
- **Texture**: different patterns
Decoding

```
Physics'' of Notations
```

Appropriate notations »
offload some of the burden from cognitive to perceptual

Note: “dual channel theory”:
auditory/verbal channel and visual/pictorial channel are processed in parallel

Principles for Designing Efficient and Effective Visual Notations

``Physics'' of Notations
Semiotic Clarity (semiotics = study of signs and sign processes)

```
Physics'' of Notations
```
Perceptual Discriminability

``Physics'' of Notations
(a) Divers programming Aqua2 during pool trials.
(b) A diver programming Aqua2 during an HRI trial held at a lake in central Québec.

c) Example of command acknowledgement given on the LED screen of the Aqua2 robot during field trials.

Perceptual Discriminability

should be easy to **distinguish** visual symbols

ability to distinguish is determined by **visual distance**
larger visual distance » faster, more accurate recognition

- **number** of visual variables on which they differ and the **magnitude** of the differences
- **shape** is the main visual variable
Perceptual Discriminability

Software Engineering notations mostly use rectangle variants

Use **redundant** visual encoding to **increase distance** (e.g., textual + visual)
Semantic Transparency

The meaning of a symbol can be inferred from its appearance (intuitive).

Symbols can be:
Semantic Transparency: semantically immediate symbols

``Physics'' of Notations
Semantic Transparency

```
Physics'' of Notations
```
Semantic Transparency

The meaning of a symbol can be inferred from its appearance (intuitive)

Symbols can be:

- Semantically Immediate
- Semantically Opaque

Software Engineering notations are usually abstract (non-intuitive)
Semantic Transparency: semantically perverse symbols

``Physics'' of Notations
Semantic Transparency

The **meaning** of a symbol can be **inferred** from its **appearance** (intuitive)

Symbols can be:

- Semantically Immediate
- Semantically Opaque
- Semantically Perverse

Domain-specific icons and visual arrangement should be intuitive
Complexity management (# elements in diagram » cognitive overload)
Modularization/Hierarchy

```
Physics'' of Notations
```
Cognitive Integration (different notations)

- Conceptual integration (coherent mental model)
- Enable navigation and transition between notations

``Physics'' of Notations
Visual Expressiveness

Number of visual variables used (UML, mostly shape, no colour)

8 degrees of visual freedom (0 = non-visual – 8 = visually saturated)
Visual Expressiveness

Different visual variables have **different capacity** to encode information

<table>
<thead>
<tr>
<th>Variable</th>
<th>Power</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal position (x)</td>
<td>Interval</td>
<td>10-15</td>
</tr>
<tr>
<td>Vertical position (y)</td>
<td>Interval</td>
<td>10-15</td>
</tr>
<tr>
<td>Size</td>
<td>Interval</td>
<td>20</td>
</tr>
<tr>
<td>Brightness</td>
<td>Ordinal</td>
<td>6-7</td>
</tr>
<tr>
<td>Colour</td>
<td>Nominal</td>
<td>7-10</td>
</tr>
<tr>
<td>Texture</td>
<td>Nominal</td>
<td>2-5</td>
</tr>
<tr>
<td>Shape</td>
<td>Nominal</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Orientation</td>
<td>Nominal</td>
<td>4</td>
</tr>
</tbody>
</table>
Dual Encoding

Combine **Textual** and **Visual**

Supplement rather than duplicate (e.g., multiplicity values)

Graphical encoding	*Textual encoding*	*Dual coding (graphics + text)*
0..1 \[\rightarrow\] 3..15 | 0..1 | 3..15

Reinforce meaning
Graphic Economy

- Not too many symbols. If many, provide **legend**
- Limit on human discrimination capability (6 levels per variable)
- Upper limit on graphic complexity

How?
Cognitive Fit

Adapt choice of visual notation to
• Task
• Audience (novices vs. experts)

Adaptation may be dynamic ("learn" about Task/User proficiency)

Representation medium matters
Interactions among principles

<table>
<thead>
<tr>
<th></th>
<th>Semiotic Clarity</th>
<th>Perceptual Discriminability</th>
<th>Semantic Transparency</th>
<th>Cognitive Integration</th>
<th>Visual Expressiveness</th>
<th>Dual Coding</th>
<th>Graphic Economy</th>
<th>Cognitive Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiotic Clarity</td>
<td>+</td>
<td>±</td>
<td>+</td>
<td>±</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceptual Discriminability</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semantic Transparency</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>±</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive Integration</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Expressiveness</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual Coding</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphic Economy</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive Fit</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>