Higraphs, a Visual Formalism

- abstract and concrete visual syntax + basic semantics refined in specific formalisms such as Statecharts
- visualizing complex information in a compact fashion
- visualizing non-quantitative, structural information
\Rightarrow use topological, not geometrical constructs
\Rightarrow combine:

1. Venn diagrams (Jordan curve: inside/outside): enclosure, intersection
2. hypergraphs (extending graphs)

David Harel. On visual formalisms. CACM, 31(5):514-530, May 1988.

Higraphs 1. Venn diagrams, Euler circles

- visual syntax: topological notions (as opposed to geometrical) insideness, enclosure, intersection, exclusion
- semantics: mathematical set operations subset $(B \subset A)$, union $(P \cup Q)$, intersection $(P \cap Q)$, difference $(P \backslash Q)$

Higraphs 2. Hypergraphs

a hypergraph

- syntax: topological notion of connectedness
- semantics: relations between sets
\rightsquigarrow graph: edges encode a binary relation $G \subseteq X \times X$
\rightsquigarrow hypergraph: hyperedges encode non-binary relation $H G \subseteq 2^{X}$ (undirected), $H G \subseteq 2^{X} \times 2^{X}$ (directed).

Higraphs

Combine:

1. sets + cartesian product
2. hypergraphs

Visual syntax: blobs

- syntax: blob, semantics: set
- syntax: insideness, semantics: subset \subset (not membership \in)

Unique Blobs

- syntax: empty space has no meaning, identify intersection explicitly
\Rightarrow atomic blobs are identifiable sets (e.g., $A \cap D$ identified as B)
\Rightarrow non-atomic blobs are union of enclosed sets (e.g., $K=K \cup M \cup N \cup O \cup P$)

syntax: orthogonal components semantics: unordered cartesian product

syntax:

semantics:

$$
K=G \otimes H=(L \cup M) \otimes(N \cup O \cup P)
$$

Meaningless constructs

- syntactically possible, semantically nonsense
- alternative semantics might give meaning to these constructs

Simple Higraph

AND/OR levels

or: meaning of blobs (e.g., K and L) in an orthogonal component: $K \cup L \Rightarrow$ in K or in L.
and: meaning of orthogonal components (e.g., $A 1$ and $A 2$): $A 1 \otimes A 2 \Rightarrow$ in $A 1$ and in $A 2$.

Induced Acyclic Graph (blob/orth comp alternation)

Adding (hyper) edges

- syntax: hyperedges
- syntax: attach ends to contour of any blob, inter-level possible
- semantics: known for blobs and hyperedges, but combination ?

Syntax ...Semantics ?

Fully connected semantics (clique)

Entity Relationship Diagram

Higraph version of E-R diagram

replace is-a relationship by insideness

Extending the higraph is easy

try this in E-R...

Formally (syntax)

A higraph H is a quadruple

$$
H=(B, E, \sigma, \pi)
$$

B : finite set of all unique blobs
E : set of hyperedges

$$
\subseteq X \times X, \quad \subseteq 2^{X}, \quad \subseteq 2^{X} \times 2^{X}
$$

The subblob (direct descendants) function σ

$$
\begin{gathered}
\sigma: B \rightarrow 2^{B} \\
\sigma^{0}(x)=\{x\}, \sigma^{i+1}=\bigcup_{y \in \sigma^{i}(x)} \sigma(y), \sigma^{+}(x)=\bigcup_{i=1}^{+\infty} \sigma^{i}(x)
\end{gathered}
$$

Subblobs ${ }^{+}$cycle free

$$
x \notin \sigma^{+}(x)
$$

The partitioning function π associates equivalence relationship with x

$$
\pi: B \rightarrow 2^{B \times B}
$$

Equivalence classes π_{i} are (by definition) orthogonal components of x

$$
\pi_{1}(x), \pi_{2}(x), \ldots, \pi_{k_{x}}(x)
$$

$k_{x}=1$ means a single orthogonal component (no partitioning)

Blobs in different orthogonal components of x are disjoint

$$
\forall y, z \in \sigma(x): \sigma^{+}(y) \cap \sigma^{+}(z)=\emptyset
$$

unless in the same equivalence class

Simple Higraph

Orthogonal Components induced by π

$$
\begin{gathered}
B=\{A, B, C, D, E, F, C, G, H, I, J, K, L, M\} \\
E=\{(I, H),(B, J),(L, C)\} \\
\rho(A)=\{B, C, H, J\}, \rho(G)=\{H, I\}, \rho(B)=\{D, E\}, \rho(C)=\{E, F\}, \\
\rho(J)=\{K, L, M\} \\
\rho(D)=\rho(E)=\rho(F)=\rho(H)=\rho(I)=\rho(K)=\rho(L)=\rho(M)=\emptyset \\
\pi(J)=\{(K, K),(K, L),(L, L),(L, K),(M, M)\}
\end{gathered}
$$

Induces equivalence classes $\pi_{1}(J)=\{K, L\}$ and $\pi_{2}(J)=\{M\}, \ldots$
These are the orthogonal components

Higraph applications

- E-R diagrams
- object-model diagrams Example use in David Harel and Eran Gery. Executable object modeling with statecharts. IEEE Computer, pages 31-42, 1997.
- UML activity diagrams
- Statecharts

