Sequence Diagrams

Comp-304 : Sequence Diagrams
Lecture 12

Alexandre Denault
Original notes by Hans Vangheluwe
Computer Science
McGill University
Fall 2006

' Collaboration and Time

m | gst class, we took a look
at Collaboration Diagrams.

B These diagrams are also 1) land{),
known as Communication
Diagrams in UML 2.0.

B As already mentioned,
ordering of messages is
achieved by illustrating |EftFlap:Flap rightFlap.Flap
them.

B This is not very visual.

aclTAIrcraft

' Sequence Diagrams

ac T Aircraft leftFlap:Flap rightFlap.Flap
jand(} |
> |
]

getangle(): int >
B Sequence diagrams

have more of a
temporal focus. getangle(): nt

® However, they contain
Nno association
iInformation.

setangle(int)
=

A%

A%

|
|
setangle(ir) |
|
|
|
|
|
|
I

y

A closer look

ac TAircraft leftFlap.Flap rghtFlap Flap
I I I
|ar|'j|::];} | | |
getangle(). int . | |
L~ I
I
setangle(int) - I l
- |
|
qetangle(): |nt - !
S
setangle(ir) |

=5 __

\

' Components of Seq Diags

® Vertical time axis, time increasing downwards.

m Objects that exchange messages in the current
execution are shown on the horizontal axis, at the top.

® \With every object is a vertical dashed line, which depicts
object lifetime.

m QOver the object lifetime line is a rectangle, which depicts
when an object is active (i.e. executing).

« The rectangle's size is proportional to how much time the
execution takes.

* Arrows depict messages from a sender object to a target
object and the message is written along the arrow.

' In this diagram ...

B |n the example above, we assume that ac1 has a leftFlap
and a rightFlap.

m Note that when we send the getAngle() message, we
don't have an arrow that shows the return value.

B Given the message is synchronous, this is implicit and it

IS not shown on the diagram.

' Problem

m Suppose the code for land() was the following...
function land/()

left = leftFlap.getAngle()
right = rightFlap.getAngle ()

1f (left !'= landAngle)
leftFlap.setAngle (landAngle)
1f (right != landAngle)

rightFlap.setAngle (landAngle)
® How can we show that setAngle(int) will be conditionally

called ?

' Solution in UML 1.4

B How can we show that

setAngle(int) will be conditionally [tinction anan N
Called ’) left = leftFlap.getangle()
right = rightFlap.getangle()
H We Can't | If (left I= landAngle)
_' _ _ | Ie_ftFIap.set&ﬂgle[landhﬂgle]
® The solution is to add little notes T{right = lanaAngle) _
) rightFlap.setAngle(landangle)
to the diagram, on the far left.
® The note will let us know of this fleftFlap angle doesn'tequal D
g landing angle, then call
conditional message. setAngle(landing angle) on |eftFlap.

Do the same far rightFlap.

B The note can be pseudocode or
just a plain sentence.

y

Solution in UML 2.0

B Use an OPT frame.

ac TAircraft leftFlap:Flap rightFlap:Flap
land(} |

|

getangle(): int . !
L=

apt [leftAngle 1= Iandf-’-‘mgley setangle(int) -
b=
:
getangle(): Int -
| L
I
I
apt [righAngle 1= Iandﬂ«ngley setangle[irh -
| ="
I
I
l
I
I

' All types of Frames

m Alt: Alternative fragment

for mutual exclusion o 1
conditional logic e |
expressed in the guards. A ——

® | oop: Loop fragment
while guard is true.

m Opt: Optional fragment
that executes if guard is |
true.)

m Par: Parallel fragments N—
that execute in parallel. =

m Region: Critical region
within which only one
thread can run.

' Sync vs Async

B |f you order a piece of equipment, and the salesman
goes in the back store, do you wait for the piece of
equipment?

® |f you order a piece of equipment, and the salesman tells
you it backorder, do you wait for the piece of equipment?

y

' Synchronous Messages

B The sender object waits until target object finishes its
execution of the message.

B Target object processes only one message at a time.

B Consequently, this behavior represents a single
threaded processor.

« only one object is active at any time

y

' Asynchronous Messages

B Sender object doesn't wait until target object finishes its
execution of the message.

B Target object may accept many messages at a time.

m Consequently, this behavior requires a multi-threaded
Processor.

« many objects can be active at any time
+ this is also known as concurrence

Fire and forget

y

' Depicting Async Messages

B |nstead of using a regular arrow, we use a stick
arrowhead (in both collaboration and sequence).

+ In collaboration diagrams, nothing really changes!

B |n sequence diagrams
« we may have two objects executing at the same time.

+ sender object continues executing after sending message,
target object starts executing as well.

m Of the target object can accept multiple messages, how

does it handle them??

' Concurrency

m |f target object's method implements threading,
+ It can thread itself to handle messages.
« This is called operation level concurrency.
m |f target object itself implements threading,
+ It can thread itself to handle messages.
« This is called object level concurrency.

m |f objects don't implement any threading but the system
IS concurrent, objects must implement some way of
handling messages. (system level concurrency)

+ Refuse message(s) if busy
+ Interrupt current executing message and start on new message

+ Queue message(s) for later processing (can be priority queue) I

' Message Priorities

B One way to deal with asynchronous messages is to
gqueue them.

® That way, only one of them is processed at a time.

®m But what happens if a message is more important than
others.

B You can use priority levels to determine the order
messages are processed.

® \What are the dangers of this?

y

y

Async Flaps

acl.Alrcraft lefiFlap. Flap rightFlap Flap
land(}. I | :
> . |
getangle(). int .~ | |
- |
|
qetangle(). |nt - I
b=

sefangle(int)

setangle(jnt)

' Callback Mechanism

B Uses asynchronous messages.

m A subscriber object 01 is interested in an event e that
OCCurs in o2.

B 01 registers interest in e by sending a message (that
contains a reference to itself) to 02 and continues its
execution.

® \When e occurs, 02 will callback asynchronously to o1
(and any other subscribers).

y

Callback lllustrated

appApplicatian drawAction: Actiaon draw B utton: JBuUttan

|
|
|
register(drawAction) =~
|
|ﬁ§ttiﬂﬂF‘Et‘fDFﬂEd[Ever‘lt]

!fctiujﬂF'erTujmed[Eventj

!i,fl:tiujﬂF'erTarned[Eventj

y

B Sequence diagrams use

an X to symbo

of-life of an obj

® |n garbage-col

1ze the end-
ect.

ected

languages, nothing needs

to be done.

B However, in other
languages, such as C++,
the memory must be

freed.

Object End-of-Life

Dispatcher

create(Task) >

Draw Command

execute()

[P
L~

X

y

' Broadcast

B Similar to iterative messaging, broadcast allows you to
send a message to multiple objects.

B However, contrary to iterative messaging, no references
are required.

B A broadcast is send to all the objects in the system.

* - load() -
Startl) pSequence «broadcasts” (Object) —‘

B |f only a specific category of object is targeted, we call

this a narrow cast.

T loadl) -
Startl) pSequence «broadcasty” (Shape) —‘

