
Sequence Diagrams

Comp-304 : Sequence Diagrams
Lecture 12

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2006 



Collaboration and Time

■ Last class, we took a look 
at Collaboration Diagrams.

■ These diagrams are also 
known as Communication 
Diagrams in UML 2.0.

■ As already mentioned, 
ordering of messages is 
achieved by illustrating 
them.

■ This is not very visual.



Sequence Diagrams

■ Sequence diagrams 
have more of a 
temporal focus.

■ However, they contain 
no association 
information.



A closer look



Components of Seq Diags

■ Vertical time axis, time increasing downwards.
■ Objects that exchange messages in the current 

execution are shown on the horizontal axis, at the top.
■ With every object is a vertical dashed line, which depicts 

object lifetime.
■ Over the object lifetime line is a rectangle, which depicts 

when an object is active (i.e. executing). 
 The rectangle's size is proportional to how much time the 

execution takes.
● Arrows depict messages from a sender object to a target 

object and the message is written along the arrow.



In this diagram ...

■ In the example above, we assume that ac1 has a leftFlap 
and a rightFlap. 

■ Note that when we send the getAngle() message, we 
don't have an arrow that shows the return value. 

■ Given the message is synchronous, this is implicit and it 
is not shown on the diagram. 



Problem

■ Suppose the code for land() was the following...
function land()

left = leftFlap.getAngle()
right = rightFlap.getAngle()
if (left != landAngle)

leftFlap.setAngle(landAngle)
if (right != landAngle)

rightFlap.setAngle(landAngle)
■ How can we show that setAngle(int) will be conditionally 

called ?



Solution in UML 1.4

■ How can we show that 
setAngle(int) will be conditionally 
called ?

■ We Can't !
■ The solution is to add little notes 

to the diagram, on the far left.
■ The note will let us know of this 

conditional message.
■ The note can be pseudocode or 

just a plain sentence.



Solution in UML 2.0

■ Use an OPT frame.



All types of Frames

■ Alt: Alternative fragment 
for mutual exclusion 
conditional logic 
expressed in the guards.

■ Loop: Loop fragment 
while guard is true.

■ Opt: Optional fragment 
that executes if guard is 
true.

■ Par: Parallel fragments 
that execute in parallel.

■ Region: Critical region 
within which only one 
thread can run.



Sync vs Async

■ If you order a piece of equipment, and the salesman 
goes in the back store, do you wait for the piece of 
equipment?

■ If you order a piece of equipment, and the salesman tells 
you it backorder, do you wait for the piece of equipment?



Synchronous Messages

■ The sender object waits until target object finishes its 
execution of the message.

■ Target object processes only one message at a time.
■ Consequently, this behavior represents a single 

threaded processor.
 only one object is active at any time



Asynchronous Messages

■ Sender object doesn't wait until target object finishes its 
execution of the message.

■ Target object may accept many messages at a time.
■ Consequently, this behavior requires a multi-threaded 

processor.
 many objects can be active at any time
 this is also known as concurrence

Fire and forget



Depicting Async Messages

■ Instead of using a regular arrow, we use a stick 
arrowhead (in both collaboration and sequence).
 In collaboration diagrams, nothing really changes!

■ In sequence diagrams
 we may have two objects executing at the same time.
 sender object continues executing after sending message, 

target object starts executing as well.
■ Of the target object can accept multiple messages, how 

does it handle them?



Concurrency

■ If target object's method implements threading, 
 It can thread itself to handle messages.
 This is called operation level concurrency.

■ If target object itself implements threading,
 It can thread itself to handle messages.
 This is called object level concurrency.

■ If objects don't implement any threading but the system 
is concurrent, objects must implement some way of 
handling messages. (system level concurrency)
 Refuse message(s) if busy
 Interrupt current executing message and start on new message
 Queue message(s) for later processing (can be priority queue)



Message Priorities

■ One way to deal with asynchronous messages is to 
queue them.

■ That way, only one of them is processed at a time.
■ But what happens if a message is more important than 

others.
■ You can use priority levels to determine the order 

messages are processed.
■ What are the dangers of this?



Async Flaps



Callback Mechanism

■ Uses asynchronous messages.
■ A subscriber object o1 is interested in an event e that 

occurs in o2.
■ o1 registers interest in e by sending a message (that 

contains a reference to itself) to o2 and continues its 
execution.

■ When e occurs, o2 will callback asynchronously to o1 
(and any other subscribers).



Callback Illustrated



Object End-of-Life

■ Sequence diagrams use 
an X to symbolize the end-
of-life of an object.

■ In garbage-collected 
languages, nothing needs 
to be done.

■ However, in other 
languages, such as C++, 
the memory must be 
freed.



Broadcast

■ Similar to iterative messaging, broadcast allows you to 
send a message to multiple objects.

■ However, contrary to iterative messaging, no references 
are required.

■ A broadcast is send to all the objects in the system.

■ If only a specific category of object is targeted, we call 
this a narrow cast.


