Productivity

Comp-304 : Productivity Lecture 2

Alexandre Denault Original notes by Hans Vangheluwe Computer Science McGill University Fall 2006

Announcements

Class canceled next Wednesday

- Next class will be held on Friday
- I've decided on the assignment scheme
 - Unit Testing, 5% 1 week Solo
 - OO, 5% 1 week Solo
 - UML, 10% 2 weeks Solo
 - Statecharts, 10% 2 weeks Must Pair Programming
 - Command Pattern, 5% 1 week Pair Programming Optional
 - Observer Pattern, 15% 2 weeks Pair Programming Optional

Comparing Processes

- Unclear specification
- Changes during the project
- Management Overhead
- Time-to-marked
- Customer Confidence
- Required Resources / Staff
- Concurrency of Resources

How to measure the size of an App?

Lines of Code?

- Language
- Comments
- Refactoring
- How much is delivered
- FFP metric
 - File (number of records in system)
 - Flows (interface between product and env: screen, report)
 - Process (logical manipulation of data)
 - Size = Fi + Fl + Pr
 - Cost = d X Size, where d is the productivity

What is **Productivity**?

- Economics: Amount of unit of output created per unit of input.
- Software: Amount of software (code/features) produced per unit of input.
 - What is the input for software
 - → Time
 - People

Which group was more productive?

Group A, which is composed of 8 programmers, finished the software in 12 months. Group B, which is composed of 6 programmers, finished the software in 14 months.

What affects productivity

■

What affects productivity

- Number of people on the project
- Experience of staff
 - Similar challenges
 - Amount of Re-use
- Quality of specification
- Infrastructure

The process influences productivity

"Adding manpower to a late software project makes it later"

Fred Brooks. The Mythical Man-Month. http://www.ercb.com/feature/feature.0001.html

The process influences productivity

"The bearing of a child takes nine months, no matter how many women are assigned."

Fred Brooks. The Mythical Man-Month. http://www.ercb.com/feature/feature.0001.html

Why Brooks' Law ? Team Size

Model in Forrester System Dynamics using Vensim PLE (www.vensim.com) development rate =

nominal_productivity * (1-C_overhead*(N*(N-1)))*N

Team size of N 3...9

Zoom in

Let's do the Math

development rate =

```
nominal_productivity * (1-C_overhead*(N*(N-1)))*N
```

- So the slope is determined by (1-C_overhead*(N*(N-1)))*N
 - If C_overhead is 0.006, then

$$N = 1$$
 : Slope = 1
 $N = 2$: Slope = 1.98
 $N = 3$: Slope = 2.89
 $N = 4$: Slope = 3.71
 $N = 5$: Slope = 4.4
 $N = 6$: Slope = 4.92
 $N = 7$: Slope = 5.24
 $N = 8$: Slope = 5.31
 $N = 9$: Slope = 5.11

Team Size

- The productivity of teams decreases as their number increases.
- Which software development process addresses this problem?

Solution?

(N*N)/3 + 3 Interactions

Number of Interactions

