
Intro to Design Patterns / Singleton

Comp-304 : Intro to Design Patterns / Singleton
Lecture 21

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2007



Origins of Design Patterns

■ In the 1970, an architect named Christopher Alexander 
started to question himself about design.
 How do I now if an architecture design is good?

■ Alexander proposed that there was an objective way of 
measuring quality of design.

■ He studied the architecture of many cities (buildings, 
streets, parks, etc).

■ He discovered that, although each architecture is 
different, they can still be considered high quality.



Front Porch



A solution to a problem

■ Two porches may appear structurally different, and yet 
they may still be considered of high quality.
 One porch might be a simple transition from the front yard to 

the front door.
 Another might also be a resting area.

■ However, they both solve of common problem of 
transition.

■ By comparing two items that solve a common problem, 
on can identify similarities between the designs that are 
of high quality.

■ Alexander called these similarities Patterns.



Gang of Four

■ In 1987, Kent Beck and Ward Cunningham began 
experimenting with Design Patterns.

■ They believed that this idea of patterns as solutions to 
common problems could be used with software.

■ In 1994, Erich Gamme, Richard Helm, Ralph Johnson 
and John Vlissides published Design Patterns: Elements 
of Reusable Object-Oriented Software.

■ This book, also known as the Design Pattern bible, 
helped Design Patterns gain popularity with the 
Computer Science community.

■ In recognition for their important work, the four authors 
are known as the gang of four.



What are Patterns?

"A pattern for software architecture describes a particular recurring 
design problem that arises in specific design contexts and 
presents a well-proven generic scheme for its solution. The 
solution scheme is specified by describing its constituent 
components, their responsibilities and relationships, and the ways 
in which they collaborate." [Buschmann].

■ Patterns are a solution to a problem in a context.
■ Patterns are not invented, they are derived from practical 

experience.
■ Patterns are construction blocks, to be used to solve 

complex problems.
■ Patterns can be used as a vocabulary to communicate.



Why use Patterns?

■ Because Patterns are well tested and well proven 
solution to common problems.
 They have been successfully used in the past.
 They are a form of code reuse.

■ Patterns are to Design what Libraries are to Software.



Components of a Design Pattern

■ Name
 Each pattern has an assigned name so it can be easily 

recognized.
 This gives us the vocabulary we can use to discuss design.

■ Problem
 Each pattern is design to address to a specific problem.
 Some also have conditions before the pattern can be used.

■ Solution
 Each pattern provides a solution to a problem.
 Components of that solution are also known as Participants.

■ Consequence
 They are the results and trade-off of using design patterns.



Types of Design Patterns

■ Creational Patterns
 These patterns abstract the instantiation process.
 They make the system independent of how objects are 

created, composed and represented.
■ Structural Patterns

 These patterns are concerned with how classes and objects 
are composed to form larger structures.

 These structures are use to provide new functionalities
■ Behavioral Patterns

 These patterns are concerned with algorithms and the 
assignment of responsibility between objects.

 They describe the communication between objects.



The Book

■ The Design Patterns book is a catalog of design 
patterns.

■ When faced with a design pattern, one should: 
 Browse the catalog to determine if a particular design pattern 

solves this pattern.
 If so, before implementing the solution,

➔ Carefully identify the various participants of the problems. 
➔ Study thoroughly the appropriate section in the book, 

particularity the consequence and implementation section.



Didn't I do this before?

■ The material you will see in Design Patterns is not new.
■ Some of you might have been using this stuff for years.
■ That's the whole point.
■ It's a catalog of good design.
■ If you have already been using a Pattern, then

 You now have an official name for it.
 You know it good design.
 You might gain a few new incites on how to use it.



Just a few example?

■ Command
■ Adapter
■ Proxy
■ Composite
■ Observer
■ Template Method
■ Visitor
■ Factory



Mammoth

■ Mammoth is a massively 
multiplayer game research 
framework.

■ The world of Mammoth is 
a 2D environment viewed 
from a 2D perspective.

■ The world contains a fixed 
number of game objects,  
some of which can be 
controlled by humans 
(players). 

■ A player can move around 
in the game, examine 
objects, pick them up, and 
drop them again.



IDs?

■ Each object in the world ( player, items, grass, etc ) has 
a unique Id associated to it.

■ How do I distribute Ids, making sure that I never 
distribute a duplicate one?



ID Distributor

■ Mammoth uses unique identifiers (ID) to identify all the 
Game objects in the world.

■ These IDs are distributed by a single object.
 If more than one distributor were used, duplicate IDs could be 

distributed.
■ The application needs global access to this distributor.

 It would be very complicated/ugly to pass around the reference 
to the distributor all around the application.



Problem

■ We need to make sure that only one instance of a class 
can be created.

■ We want that instance to be easy to access anywhere in 
the application.



Singleton

■ Ensure a class only has one instance, and provide a 
global point of access to it.



Class Diagram



Code Structure

public class Singleton {

private static Singleton instance = new Singleton();

private Singleton() { }

public static Singleton getInstance() {
return Singleton.instance;

}
}



Consequences

■ You are assured that only one instance can be created.
 Global access to that instance without the use of a global 

variable (less pollution)
■ Can be modified to allow a fix number of instances.
■ Singletons can be sub-classed.



ID Distributor Example
public class IdDistributor {

private static IdDistributor instance = new 
IdDistributor();

private long lastId;

private IdDistributor() { 
this.lastId = -1;

}

public static IdDistributor getInstance() {
return IdDistributor.instance;

}

public long getId() {
this.lastId++;
return this.lastId;

}
}



Lazy Initialization

public class Singleton {

private static Singleton instance;

private Singleton() { }

public static Singleton getInstance() {
if (Singleton.instance == null) {

Singleton.instance = new Singleton()
}

return Singleton.instance;
}

}



Lazy Initialization (Better)

public class Singleton {

private static Singleton instance;

private Singleton() { }

public static synchronized Singleton getInstance() {
if (Singleton.instance == null) {

Singleton.instance = new Singleton()
}

return Singleton.instance;
}

}


