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Hierarchy

■ Elements are place in a hierarchical structure for 
efficiency reasons.
 Makes culling faster and easier.

■ In such a structure, we want to manipulate the composite 
nodes and the leaf nodes in a similar way.
 Bounding Boxes
 Scaling, Rotation, Translation 



Composite Pattern

■ Compose objects into tree structures.
■ Allow for uniform treatment of 

 Atomic/primitive Objects
 Composite Objects



Composite Pattern

■ Compose objects into tree structures to represent part or 
whole hierarchies.

■ Composite lets clients treat individual objects and 
compositions of objects uniformly. This is called 
recursive composition.
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Scaling Explained

■ Clients can use the scale command on any node, sub-
components will also be scaled.

■ The user doesn't need to worry about the type of object 
he is dealing with.

■ To make this work, all components must implement the 
scale command.
 Must have the same interface.



Class Diagram



Consequences

■ Makes the client simple.
 Client doesn't need to check if it's dealing with a composite or a 

leaf.
■ Easier to add new kinds of components.

 Either composite or leaves.
■ Makes your design overly general.

 This has the disadvantage of making it difficult to control which 
components can be part of a composite.

 You will most likely need to do runtime checks.



Problem?

■ We already have problems with this diagram.
■ Component is an abstract method, so leaf must 

implement the add/remove methods.
■ But does leaf need those methods?
■ Simplest solution is to raise an exception when those 

methods a called.
 Bad design!



Class Diagram, Take 2



Imp. Conc.: Add/ Remove

■ So, where should the add/remove methods be declare?



Add/Remove

■ So, where should the add/remove methods be declare?
■ If we declare it in component (component-level), then the 

leafs will have meaningless methods.
 Bad Design!

■ If we declare the methods only in the composite 
(composite-level), then we break the abstraction.
 Client needs to know the difference between composite and 

leaf.
■ Who keeps references to the children, the component or 

the composite?
 At the component level, this would be bad design.
 In addition, there is a memory penalty since leaf will also have 

a list for children.



 Safety vs Transparency

Safety Transparency



Multiple Parents

■ What happens if a child has multiple parents?
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Other Implementation Concerns

■ Child Ordering : if we draw shapes, we need to know 
which shape is above other shapes.
 We can just store the children in order, but we need the proper 

data structure for that.
■ Caching children lookup: Each composite caches it's 

number of children.
 If a new composite is added, we can easily compute the 

number of children. 
 Again, memory vs speed.

■ Who should delete?
 Sending delete to a component, should we cascade delete or 

not.



Example



Inventories



WorldObjects

Which cohesion problem can be found here?
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Second Example
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