
Composite

Comp-304 : Composite
Lecture 24

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2007



3D Room



Scene Graphs

Universe

Room 1 Room 2

Desk

Books Lamp

Bed Wardrobe

DrawersDoors



Hierarchy

■ Elements are place in a hierarchical structure for 
efficiency reasons.
 Makes culling faster and easier.

■ In such a structure, we want to manipulate the composite 
nodes and the leaf nodes in a similar way.
 Bounding Boxes
 Scaling, Rotation, Translation 



Composite Pattern

■ Compose objects into tree structures.
■ Allow for uniform treatment of 

 Atomic/primitive Objects
 Composite Objects



Composite Pattern

■ Compose objects into tree structures to represent part or 
whole hierarchies.

■ Composite lets clients treat individual objects and 
compositions of objects uniformly. This is called 
recursive composition.



Scaling

Universe

Room 1 Room 2

Desk

Books Lamp

Bed Wardrobe

DrawersDoors

Scale (0.5)



Scaling Explained

■ Clients can use the scale command on any node, sub-
components will also be scaled.

■ The user doesn't need to worry about the type of object 
he is dealing with.

■ To make this work, all components must implement the 
scale command.
 Must have the same interface.



Class Diagram



Consequences

■ Makes the client simple.
 Client doesn't need to check if it's dealing with a composite or a 

leaf.
■ Easier to add new kinds of components.

 Either composite or leaves.
■ Makes your design overly general.

 This has the disadvantage of making it difficult to control which 
components can be part of a composite.

 You will most likely need to do runtime checks.



Problem?

■ We already have problems with this diagram.
■ Component is an abstract method, so leaf must 

implement the add/remove methods.
■ But does leaf need those methods?
■ Simplest solution is to raise an exception when those 

methods a called.
 Bad design!



Class Diagram, Take 2



Imp. Conc.: Add/ Remove

■ So, where should the add/remove methods be declare?



Add/Remove

■ So, where should the add/remove methods be declare?
■ If we declare it in component (component-level), then the 

leafs will have meaningless methods.
 Bad Design!

■ If we declare the methods only in the composite 
(composite-level), then we break the abstraction.
 Client needs to know the difference between composite and 

leaf.
■ Who keeps references to the children, the component or 

the composite?
 At the component level, this would be bad design.
 In addition, there is a memory penalty since leaf will also have 

a list for children.



 Safety vs Transparency

Safety Transparency



Multiple Parents

■ What happens if a child has multiple parents?

Universe

Room 1 Room 2

Desk

Books Lamp

Door Wardrobe

DrawersDoors

Scale (0.5)



Other Implementation Concerns

■ Child Ordering : if we draw shapes, we need to know 
which shape is above other shapes.
 We can just store the children in order, but we need the proper 

data structure for that.
■ Caching children lookup: Each composite caches it's 

number of children.
 If a new composite is added, we can easily compute the 

number of children. 
 Again, memory vs speed.

■ Who should delete?
 Sending delete to a component, should we cascade delete or 

not.



Example



Inventories



WorldObjects

Which cohesion problem can be found here?



In action

Bob

Wallet Backpack

Currency Pencil case Apple

Pencil



Second Example

Frame

Layered PaneLayered Pane

ComboBox

CheckBox

Label

Label

Label

Label

Label



Swing


