Factory

Comp-304 : Factory
Lecture 31

Alexandre Denault
Original notes by Hans Vangheluwe
Computer Science
McGill University
Fall 2007

Mercury

10/ 23 = 43.5%

y

Human vs Orc

B The following classes are from a real time strategy game

where Humans and Orcs face each other for supremacy

Unit

COrcish Grunt

Human Footman

A\
Wiorker Cavalry
orecish Pean Human Feasant Soldier oreish Walf Rider Human knight

® Fach Human unit has an Orcs counterpart which is
identical.

y

' If ... else ...

B The interface for players playing either race is identical.

B Thus, every function that creates a unit has a similar
piece of code:

Worker worker;

1if (player.race == RACE.HUMAN) ({
worker = createPeasants|()

} else {
worker = createPeon ()

)
B This Is bad because

+ It's code duplication.
+ It's going to make things complicated when | add another race.

B \What can | do to avoid this? I

' Factory Patterns

B Factory patterns are examples of creational patterns

B They hide how objects are created and help make the
overall system independent of how its objects are created

and composed.

y

' Two Types

m Class creational patterns focus on the use of inheritance
to decide the object to be instantiated

+ Factory Method

® Object creational patterns focus on the delegation of the
instantiation to another object

« Abstract Factory

y

' Abstract Factory

B Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

y

' Applicability

m Use the Abstract Factory pattern in any of the following
situations:

« A system should be independent of how its products are
created, composed, and represented

« A class can't anticipate the class of objects it must create
« A system must use just one of a set of families of products

« A family of related product objects is designed to be used
together, and you need to enforce this constraint

y

Families of Soldiers

winterfaces
AbstractFactory

createWarker() Worker
createSoldier(); Soldier
createCavalry(): Cavalry

T

HumanFactary orcFactony
createWorker(), Woarker { retum new HumanFeasant() } createWorker(). Woarker { retum new OrcFeon() }
createsoldien): Saldier {return new HumanFootman() } createSoldier(): Saldier {return new OrcGrunt() }

createCavalry(): Cavalry { retum new Humanknight() 1 createCavalry(): Cavalry { retum new OrcWalfRider() }

Class Diagram

Client
AbsiractProductA
AbstractFactory 'flh'
CreateProductA()
CrealeProductB()
FProductA ProductA?2

(. T T
I I
I I
I I
I I
I I
I I
ConcreteFactory? ConcreteFactorny 2 - _I | AbstractProductB |
CreateProductA() CreateProductA() | : :
CreateProductB() CreateProductB() | | ‘% |
: | |
| |
: | ProductB 1 ProductB 2 |

| |

| |

I

I
I

' Participants

m AbstractFactory

« Declares an interface for operations that create abstract
product objects

m ConcreteFactory
« Implements the operations to create concrete product objects
B AbstractProduct

« Declares an interface for a type of product object

B ConcreteProduct

« Defines a product object to be created by the corresponding
concrete factory

« Implements the AbstractProduct interface

m Client
« Uses only interfaces declared by AbstractFactory and I

AbstractProduct classes

' Consequences

®m Fxchanging or adding product families is easy.

m |t also promotes consistencies among product (across
families).

B However, adding new products involves a lot more
modifications.

y

' GUI Systems Games

m Before 3D acceleration, GUI system in game very
sensitive to screen resolution variations.

B For gameplay reasons, whatever the screen resolution,
the GUI had to be the same size.

m Because of this complexity, many games had only one
resolution.

y

GUIFactory

AbstractG uiF actory

createVVindow (). Window
createButtony). Widget
createlabel). Widget
creale TextBox(). Widgel
createfFramey). Widgetl

Fa
GuicdOxd80Factory Guig00xe00Factary Guil024x7e8EFactory
create’Vindow (). Window createVindow (). Window createVVindow () Window
createButton). Widget createButton(): Widget createButton). Widget
createlabel() Widget createlabel() Widget createlabel() Widget
createTextBox(): Widget createTexiBox(): Widget createTextBox(). Widget
createFrame(). Widget createFrame(). Widget createFrame(). Widget

' Factories as Singletons

m Typically, you only need one instance of a factory per
product family.

®m That makes it an ideal candidate for Singleton.

y

' Extensible Factories

B One of the big limitation of Abstract Factory is the impact
of adding new products.

m A flexible, but less safe design, is to parameterize the
object you want to create.

y

Abstractc uiFactory

create\WWindow(). Window
createWidgelType: String): Widget

N

Example

Guisdlxds0Factory

Guig00xe00Factany

Guil024x7eBFactory

createwindow(): Window
createWidget(type: String): Widget

createWindow(): Window
createWidget{type: String): Widget

createwindow(): Window
createWidget(type: String): Widget

' The Problems ...

B As already mentioned, this is not a safe design.
« Implementing in all factories
« Coercision

B |[n addition, all return Products must have the same
return type.

y

Another Example

ginterfaces
DocumentGeneratar

createletter(): Letter
createFax(): Fax
createResume() Resume
createCoverPage() CoverPage

/- T

I I
BlackWhiteDocumentGenerator CalorDocumentGenerator
createletter(). Letter createletter(). Letter
createFax(). Fax createFax(): Fax
createResume() Fesume createResume() Eesume
createCoverFage() CoverFage createCoverFage() CoverFage

y

' Let design this ...

B |I'm currently designing a unified driver for Nvidia Geforce
cards.
B This unified driver supports the following cards.
+ Geforce 2
+ Geforce 3
+ Geforce 4
+ Geforce FX
« Geforce 6
« Geforce 7
+ Geforce 8

' Shader Objects

B Shaders are programs written specifically for graphic
cards to perform visual effects.

B Two main types of shaders exist:
« Pixel shaders : works on a 2D image / texture
+ Vertex shaders : works on a 3D mesh

y

' Shader Support

m Different architectures support different types of shaders.
+ Geforce 2,3,4 : Pixel and Vertex Shaders 1.0
+ Geforce FX : Pixel and Vertex Shaders 2.0
+ Geforce 6, 7 : Pixel and Vertex Shaders 3.0
+ Geforce 8 : Pixel and Vertex Shaders 4.0

y

Shader Objects

ainterfaces
shader

T

«interfaces
Fixelshader

Fixelshader

o

I

I

—

|
Fixelshader2 -

I

Fixelshaders | |

I

|

Fixelshaderd

ainterfaces

Yertexshader
F———e
| |
VertexShader1 _:
-

Vertexshader? |—JI

|
VertexShader3 :
|

Vertexshaderd

' Creating these objects

B As already mentioned, different cards create different
types of shader objects.

« If a particular functionality is not supported by a particular card,
it is sometimes emulated in software.

m However, an OpenGL or DirectX application should be
able to create shader objects in a generic fashion.

+ j.e. It doesn't need to know we have a Geforce FX.

y

ShaderFactory

shaderManager

getshaderFactary(): ShaderFactany

winterfaces
shaderFactory

createPixelshaden) . Pixelshader

createVertexshader() © Verexshader

shader1Factory

createPixelsShadern) | PixelShader { return new PixelShaderi1() }
createVertexshader() - VertexsShader { retum new Vextexshader1() }

shader2Factory

createPixelshader) | Pixelshader { return new PixelShader2() }
createVvertexshader() | Verexshader { retum new VextexsShader2() }

