
The meaning of OO, part 2?

Comp-304 : The meaning of OO, part 2
Lecture 6

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2006

Changes to Assignment 1

■ Task 2
 Fix any bug I might have inserted in the code. These bugs are

typos, usually involving one or two characters. If a method
does something mathematically impossible (division by zero,
for example), it should throw a ArithmeticError exception. You
will need to add those checks and test for them.

■ Task 3
 Implement the following functions in the Vector class :

dotProduct, unit. Also, implement the equals function in the
Force and Mass classes. You can use the unit tests from Task
1 to help you implement these functions (as done in XP
Programming).You don't need to implement the crossProduct
method in the Vector class.

Assignment 1 : Force Object

v1 = vector(2,2)
f1 = force(v1, 5, 10)

f1.getMagnitudeAtTime(0) -> (0,0)
f1.getMagnitudeAtTime(1) -> (0,0)
f1.getMagnitudeAtTime(4) -> (0,0)
f1.getMagnitudeAtTime(5) -> (2,2)
f1.getMagnitudeAtTime(6) -> (2,2)
f1.getMagnitudeAtTime(9) -> (2,2)
f1.getMagnitudeAtTime(10) -> (2,2)
f1.getMagnitudeAtTime(11) -> (0,0)

Assignment 1 : Force Object

v1 = vector(2,2)
v2 = vector(1,1)
f1 = force(v1, 5, 10).add(force(v2, 1, 6))

f1.getMagnitudeAtTime(0) -> (0,0)
f1.getMagnitudeAtTime(1) -> (1,1)
f1.getMagnitudeAtTime(4) -> (1,1)
f1.getMagnitudeAtTime(5) -> (3,3)
f1.getMagnitudeAtTime(6) -> (3,3)
f1.getMagnitudeAtTime(7) -> (2,2)
f1.getMagnitudeAtTime(9) -> (2,2)
f1.getMagnitudeAtTime(10) -> (2,2)
f1.getMagnitudeAtTime(11) -> (0,0)

Recap

1)Encapsulated
2)State Retention
3)Implementation / Information Hiding
4)Object Identity
5)Messages
6)Classes
7)Inheritance
8)Polymorphism
9)Generacity

Horizontal vs Vertical Packaging

Zone-based

Tile-based

Replication Strategy Interest Management

Zone-based
Replication Strategy

Zone-based
Interest Management

Tile-based
Replication Strategy

Tile-based
Interest Management

 Info. / Implementation hiding

■ When observing an encapsulation, we can have two
point of view:
 From the outside (public view)
 From the inside (private view)

■ The advantages of a good encapsulation is the
separation of the private and public views.

■ To access elements in the private view, users must go
through the public interface.
 Use of encapsulation to restrict internal workings of software

from external user view

Information vs Implementation

Information Hiding
■ We restrict user from

seeing information
 variables, attributes, data,

etc.
■ To access information,

users must use a set of
public methods.

Implementation Hiding
■ We restrict user from

seeing implementation
 code, operations,

methods, etc.
■ Users can use the

method without
knowledge of their
working.

Why should we do this?

■ Designer and user must agree on some interface, and
nothing else. They are independent. They do not need to
speak the same language

■ Software evolution is easier. Suppose user knows about
implementation and relies on it. Later, if the designer
changes the implementation, the software will break

■ Code re-use is high
■ Abstraction from user is high, user need not worry about

how it works!

Get / Set Rule

■ Never allow other class to directly access your attribute.
■ Once an attribute is public, it can never be changed.

 Ex: img.pixeldData
■ Make your attributes available using get/set methods.

 this.connectionStatus Bad!
 this.getConnectionStatus() Good!

Point

public interface Point {
public set(int x, int y);
public int getX();
public int getY();

}

■ Inside, point could be using Cartesian or Polar
coordinates.
 Cartesian coordinates are more efficient when dealing with lots

of translations.
 Polar coordinates are more efficient when dealing with lots of

rotatitions.

Network Engine Example

public interface NetworkClient {
public connect(String address);
public void send(Object obj);
public Object receive();
public void close();

}

■ This kind of network interface can be implemented using
multiple protocol.

■ The user doesn't even need to know which underlying
protocol is used.

Object Identity

■ Each object can be identified and treated as a distinct
entity.

■ Use unique names, labels, handles, references and / or
object identifiers to distinguish objects. This unique
identifier remains with the object for it's whole life.

■ We cannot use objects' states to distinguish objects,
since two distinct objects may have the same state (i.e.
same attribute values).

Distinct Identity

Player

Loc: 4,5
3897894

Square

Type: Wall
984323

Square

Type: Wall
4224534

Ghost

Color: Blue
678567

Memory Heap

Variable
 Player pacman

Mutable vs Immutable Objects

■ An Immutable object is an object that is created once
and is never changed.
 String, Long, etc.
 Two Immutable objects are considered the same if they have

the same state.
■ A Mutable object is an object who's state can change.

 Vector, Array, etc.
 Two different Mutable objects are never considered the same

(different identity).

Messages (Calls)

● Sender object (o1) uses messages to demand target
object (o2) to apply one of o2's methods

● For o1 to send a meaningful message to o2, it must
adhere to some message structure

● o1 must know o2's unique identifier
● o1 must know name of o2's method it wants to call
● o1 must supply any arguments to o2 so that the method may

execute properly
● i.e. in Java, we write o2.method(args)

Messages (Calls) (cont.)

■ In “pre-OO” language, we might have written method(o2,
args). Why is this not good?

■ This doesn't allow polymorphism!
■ For o1's message to properly execute o2's method, o1

must
 know the signature of o2's method
 pass the proper arguments (inputs)
 know if the method will return any values (outputs) and be

ready to store them accordingly

Types of Messages

● Three types of messages:
● Informative: supplies target object with information to update it's

attribute(s) [i.e. o2.setx(5)]
● Interrogative: asks target object to supply information about it's

attribute(s) [i.e. o2.getx()]
● Imperative: tells target object to do some action [i.e.

o2.moveNorth()]

Informative, Interrogative or Imperative ?

■ ghost.up() ?
■ grid.insertPlayer(pacman, square)
■ square.isWall() ?
■ pacman.collectPellet()
■ ghost.isScared() ?
■ square.addItem(pellet)

Synchronous vs Asynchronous

Synchronous Messaging
■ An object receiving a

request executes it
immediately and returns
the result.

Asynchronous Messaging
■ A object receiving a

request acknowledges it.
■ The request is executed

latter and the return value
is eventually returned
(often through the use of
a call-back method)

