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Overview

1. (Software) Process: definition

2. Various Software Processes

3. The Process Influences Productivity:

Dynamic Process Modelling using Forrester System Dynamics
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Process: A Queueing System
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Event/Activity/Process
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Software Processes

“The Software Engineering process is the total set of Software

Engineering activities needed to transform requirements into

software”.

Watts S. Humphrey. Software Engineering Institute, CMU.

http://portal.acm.org/citation.cfm?id=75122
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Software Processes (see notes)

• Waterfall (Royce)

• V Model (German Ministry of Defense)

• Prototyping

• Operational Specification

• Transformational (automated software synthesis)

• Phased Development: Increment and Iteration

• Spiral Model (Boehm)

• The Rational Unified Process (RUP)

• Extreme Programming (XP)
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The Rational Unified Process (RUP):
Activity Workload as Function of Time
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The Rational Unified Process (RUP): Observations

1. Waterfall-like sequence of

Requirements, Design, Implementation, Testing.

2. Not pure waterfall:

• Phased Development (iterative)

• Overlap (concurrency) between activities

3. Testing:

• Regression (test not only newly developed,

but also previously developed code)

• Testing starts before design and coding

(Extreme Programming)
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RUP: Phased Development
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Extreme Programming (XP)

www.extremeprogramming.org
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Extreme Programming (XP) highlights

• User Stories are written by the customers as things that the

system needs to do for them. They drive the creation of

acceptance tests.

• The project is divided into Iterations.
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Extreme Programming (XP) highlights

Use Class, Responsibilities, and Collaboration (CRC) Cards

to design the system.

Hans Vangheluwe hv@cs.mcgill.ca 12/22



Extreme Programming (XP) highlights

• Code the Unit Test first.

• All code must have Unit Tests; All code must pass all unit tests

before it can be released.

• Refactor whenever and wherever possible.
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Extreme Programming (XP) highlights

Pair Programming

www.charm.net/ jriley/pairall.html
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The Process influences Productivity

“Adding manpower to a late software project makes it later”.

Fred Brooks. The Mythical Man-Month.

http://www.ercb.com/feature/feature.0001.html
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Why Brooks’ Law ? Team Size.

Model in Forrester System Dynamics

using Vensim PLE (www.vensim.com)

development rate =

nominal_productivity* (1-C_overhead*(N*(N-1)))*N
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Team Size N = 5

Hans Vangheluwe hv@cs.mcgill.ca 17/22



Team Size N = 3 . . . 9

Optimal Team Size between 7 and 8
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The Effect of Adding New Personnel (FSD model)

development rate = nominal_productivity*

(1-C_overhead*(N*(N-1)))* (1.2*num_exp_working + 0.8*num_new)
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5 New Programmers after 100 days

Hans Vangheluwe hv@cs.mcgill.ca 20/22



5 New Programmers after 100 days
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0 . . . 6 New Programmers after 100 days
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