
308-304B – Object-Oriented Design

Due date: Sunday February 3, 2002 before midnight

Practical information
� 1 ��� team size ��� 2
� Each team submits only once. Include name(s) and ID(s) in every submitted file.
� Your submission must be in the form of a simple HTML file (index.html) with explicit references to all submitted files as

well as inline inclusion of images.
� The submission medium (handin, WebCT, . . .) will be anounced shortly.
� Python (www.python.org) as well as dia (www.lysator.liu.se/ � alla/dia/dia.html) are installed on all SOCS FreeBSD machines.

Requirements

In this assignment you will implement and test three classes for a Spreadsheet application (no GUI at this stage). You will also have
to make a design decision, based on performance, and draw the class diagram. The classes are:

� CellData:
Instances of this class are stored in the spreadsheet’s cells and contain data (currently only integer numbers, later also formulas
, etc.)

� CellCoordinate:
The spreadsheet uses instances of this class to index the cells.

� SpreadsheetData:
The basic spreadsheet.

Application Programmer’s Interface (API)

Your design/tests/implementation must use exactly the following externally visible, public API (API.py). This implies that all other
attributes and methods used in the design must be private (internal to the class). Note: private attributes/methods names start with __
in Python. API documentation in HTML can be automatically generated with pydoc -w. For the assignment, this leads to api.html.

’’’
###

CellData, CellCoordinate, SpreadsheetData classes API.

###
’’’

Types of objects that can be stored in a CellData object
dataTypes = (types.IntType,)

###
class CellData

1

class CellData:
"""
Encapsulated Integer data
"""

def __init__(self, value = 0):
’’’ value:Integer -> -- CellData constructor.

A TypeError is raised on bad argument.
’’’

def getValue(self):
’’’ -> :Integer’’’

def setValue(self, value = 0):
’’’ value:Integer ->

A TypeError is raised on bad argument.
’’’

def __str__(self):
’’’ -> :String

Return the string representation of the object value (Integer).
’’’

###
class CellCoordinate

class CellCoordinate:
"""
Encapsulated coordinates of cells in a spreadsheet.

Note: might in the future want to implement "coordinate arithmetic"
by means of __add__ etc.
"""

def __init__(self, row = 1, column = 1):
’’’ row:PositiveInteger, column:PositiveInteger ->

CellCoordinate constructor.
A KeyError is raised on bad arguments.
’’’

def getRow(self):
’’’ -> :Integer’’’

def getColumn(self):
’’’ -> :Integer’’’

def setRow(self, row = 1):
’’’row:PositiveInteger ->

A KeyError is raised on bad argument.
’’’

def setColumn(self, column = 1):

2

’’’column:PositiveInteger ->

A KeyError is raised on bad argument.
’’’

def __str__(self):
’’’ -> :String

Return the string representation of the cell coordinate.
Example: with row=2, column=88, __str__ will return <CellCoordinate:2,88>
’’’

###
class SpreadsheetData

class SpreadsheetData:
"""
Encapsulates a dynamically sized spreadsheet structure
containing CellData data and indexed by CellCoordinate coordinates.
"""
def __init__(self):

’’’ __init__() -> -- SpreadsheetData constructor.’’’

def __setitem__(self, coord, data):
’’’coord:CellCoordinate, data:CellData ->

Update the content of cell indexed by ‘‘coord’’ with ‘‘data’’.
A KeyError is raised on bad coordinate,
A TypeError is raised on bad value.
Example use: sd[CellCoordinate(3,4)] = CellData(33)
’’’

def __getitem__(self, coord):
’’’coord:CellCoordinate -> :CellData | None

Return the content of a cell indexed by ‘‘coord’’
(return None if the cell is empty).
A KeyError is raised on bad coordinate.
Example use: sd[CellCoordinate(3,4)]
’’’

def __delitem__(self, coord):
’’’coord:CellCoordinate ->

Empty the cell indexed by ‘‘coord’’.
A KeyError is raised on bad coordinate.
Example use: del sd[CellCoordinate(3,4)]
’’’

def getLU(self):
’’’ -> :CellCoordinate | None

Return a CellCoordinate containing the
Left-most non-empty column, and Upper-most non-emtpy row.
Return None in case of an empty spreadsheet
’’’

3

def getRB(self):
’’’ -> :CellCoordinate | None

Return a CellCoordinate containing the Right-most non-empty column,
and Bottom-most non-emtpy row.
Return None in case of an empty spreadsheet
’’’

def __str__(self):
’’’ -> :String

Return the string representation of the SpreadSheet.
This looks like a table of values with spaces for empty cells.
The row and column indexes are also shown.
’’’

1. Class Diagram

Use “dia” to draw the class diagram. Show all attributes and methods of the classes. produce a GIF or JPEG image. Both dia file and
image file must be submitted.

2. Testing and implementation

Test scripts

For each class, write a unittest test script. Each script shall test the class for

� success
� failure
� identity (sanity)

Use PyUnit (aka unittest.py) to write your scripts.
To test the test scripts, make a “dummy” implementation of all classes (just implement all class methods with pass) and run all tests.
They should all fail.

Prototype 0

Implement the classes CellData and CellCoordinate. Both should pass their respective tests.

Prototype 1

Implement the SpreadsheetData class, using Python lists (i.e., an array is a list of lists) as an internal data structure. Empty cells
are represented by None list entries. Internally, cells will be indexed like

self.__data[row][column]

This prototype should pass all tests.

Prototype 2

Implement the SpreadsheetData class, this time using a Python dictionary as an internal data structure. The dictionary keys should
be tuples containing the row and column. Internally, cells will be indexed like

self.__data[(row, column)]

This prototype should pass all tests.

3. Performance testing

Write a script (you do not have to use PyUnit) to evaluate the performance of both prototypes 1 and 2. For each prototype, we expect
the following experiments:

4

1. Full System: for a spreadsheet with n � n cells, measure the time it takes to set, then get all cells. To measure the time, you
might want to use the time module.

2. Sparse System: for a spreadsheet with n � n cells, measure the time it takes to set, then get 10% of the cells (evenly distributed).

Timing must include the time to instantiate the SpreadsheetData class. Perform experiments with different spreadsheet sizes n,
and plot the results (time as a function of n). This should result in 4 plots (Full and Sparse combined with Prototypes 1 and 2). You
must submit 4 GIF or JPEG files. For each plot, try a sufficient number of n values to obtain a curve. nmax for each plot should be
determined by the additional requirement that response time should not be more than 15 seconds. nmax will obviously depend on the
power and load of the machine you run this test on. Thus, to make meaningful conclusions, all performance tests must be run on the
same machine.
Comment on the results:

� Compare nmax in the different cases.
� Which prototype shall be used from now on, and why?

5

