
Student Name:

Student Number:

Faculty of Science
Final Examination

Computer Science COMP 304B
Object-oriented Software Design

Examiner: Prof. Hans Vangheluwe Wednesday, April 23rd , 2003

Associate Examiner: Prof. Karel Driesen 14:00 – 17:00

INSTRUCTIONS:

1. Answer all questions directly on the examination paper.

2. No notes, books, calculators, computers or other aids of any type are permitted.

3. Translation dictionaries may be used.

4. The exam has 14 questions on 12 pages.

5. Attempt all questions: partial marks are given for incomplete but correct answers.

6. Numbers between brackets [] denote the weight of each question. The exam is out of a total of 45 points.

7. This exam carries a weight of 35% of the total marks for CS304.

8. Use the back of the last page as scrap (it will be ignored during grading). The rear of the other pages
may be used as extra space to answer questions.

Good luck !



COMP 304B Final 1

(1) [2]

The above figure depicts a software process. Which characteristics do you observe in this process ?

(2) [1]

Name the 9 generally accepted features of Object-Oriented systems (no explanation required).

1.

2.

3.

4.

5.

6.

COMP 304B Final 1



COMP 304B Final 2

7.

8.

9.

(3) [4]
� Draw in UML notation, examples of inheritance, aggregation and composition.

� How would one check, during design, whether a relationship is an inheritance relationship or not ?

� When should one use aggregation ?

� When should one use composition ?

COMP 304B Final 2



COMP 304B Final 3

(4) [3]

Explain polymorphism and overloading of class methods. How are they different ? Illustrate by means of a
UML diagram.

(5) [4]

Draw the class diagram for Petri Nets (a formalism used as a rigourous basis for UML Activity Diagrams).
Unless explicitly mentioned otherwise, all class properties have public visibility.
PetriNet has public methods addPlace, verb—addTransition— and addArc. addArc takes one integer argu-
ment weight.
A PetriNet is always composed of zero or more Places and zero or more Transitions.
The Places are referred to by the role name places. The Transitions are referred to by the role name
transitions. Both Place and Transition have a name attribute of type String.
Zero or more Places are connected via pl2tr to zero or more Transitions. Navigation is only possible in
this direction (Place to Transition). Zero or more Transitions are connected via tr2pl to zero or more
Places. Navigation is only possible in this direction (Transition to Place). Both associations pl2tr and
tr2pl have attributes encapsulated in the class Arc. Arc has an non-negative integer attribute weight and a
boolean attribute weightVisible.
Exactly one Place contains zero or more Tokens. The Tokens are referred to (from a Place) by the role name
tokens. A Token has one attribute colour of class Colour.
All classes have a draw method to render them on a canvas. All classes, with the exception of the PetriNet
class have a private position attribute of class Position.

COMP 304B Final 3



COMP 304B Final 4

All Places and Transitions must have unique names. This is a global constraint.

(6) [1]

Explain “cascading delete” of an object.

(7) [2]

Draw a State Automaton which recognizes floating point numbers without exponent (e.g., 123, 123.23, 12.,
.123). Note how the automaton should not accept “.” as a valid number. Add actions (outputs) to the automaton

COMP 304B Final 4



COMP 304B Final 5

updating a variable value such that when a valid input is recognized, value contains the number’s value. You
may use a help variable if required.

(8) [8]

The following describes a “chat” application.
A Client Class accepts user requests through private methods userJoin(String) and userTalk(String).
With userJoin(crname:String), the user expresses the wish to join a chatroom with name crname. With
userTalk(msg:String), the user wants the string msg to be conveyed to the chatroom the Client is con-
nected to at that time. The private method display(String) displays a string to the user.
Through the public method ack(cr:ChatRoom), a Client receives a reference to a ChatRoom (after having
requested the Manager to join the ChatRoom). Through the public method nack(String), a Client receives
a message (from the Manager) informing it that an attempt to join failed. A nack is sent when a Client tries
to join more than one ChatRoom. Through the public method echo(String), a Client receives a broadcast
from a Chatroom. A ChatRoom sends echo messages to all Clients which have joined the room whenever it
receives a talk message from one of the subscribers.
The Manager class is only instantiated once. All Clients have a reference to this unique object. Manager has
a public method join(Client, crn:String). Through it, a Client expresses the wish to join a ChatRoom
with name crn. A Client may join a maximum of one ChatRoom at a time. The Manager’s join method
will check this. Subsequently, the Manager will check whether a ChatRoom with the name given by join’s
argument crn exists. If it doesn’t, the Manager will instantiate a new ChatRoom and keep track of its name and
reference. The constructor of ChatRoom takes as argument, the name of the ChatRoom. Once the ChatRoom
instance exists, the ChatRoom’s join(Client) method is called, adding the Client to the ChatRoom’s clients
List (which all need to be notified by means of an echo(String)message whenever a talk(String)message
arrives).
The ChatRoom class has the aforementioned public constructor, join(Client), and talk(String) methods.
Furthermore, it has the public method remove(Client) called by a Client when it wants to remove itself
from the ChatRoom.
A Client refers to its unique Manager through a reference in which the manager is known under the role name
mgr. Any number of Clients can refer to the Manager. A Client can refer to its Manager, but not the other
way around. The single Manager refers to an arbitrary number of ChatRooms (but not the other way around).
The rooms are referred to under the name rooms. An arbitrary number of Clients can be connected to zero or
one ChatRooms at any point in time. Navigation is possible in both directions. The ChatRoom is referred to by

COMP 304B Final 5



COMP 304B Final 6

the name thechatroom. The Clients are referred to by the name clients.

� Draw a UML Class Diagram for the design described above.

� Draw a UML Sequence Diagram for the following scenario. All messages are sent asynchronously.

1. Two Client instances c1 and c2 as well as a Manager instance m have been instantiated.

2. Client c1 wants to join the chatroom with name “cs304”. It contacts m which creates the ChatRoom
cs304cr. m passes on the join request to cs304cr which in turn sends an appropriate ack message
to c1.

3. Client c1 talks to the chatroom it is now connected to, sending the string “hello”. The chatroom
reacts appropriately.

4. Client c2 now also wants to join the chatroom with name “cs304”. It contacts m which passes on
the join request to cs304cr which in turn sends an appropriate ack message to c2.

5. Client c2 now talks to the chatroom it is now connected to, sending the string “I joined too”. The
chatroom reacts appropriately.

6. Client c2 now tries to join another chatroom with name “music”. The manager reacts appropri-
ately.

7. Client c2 now removes itself from cs304cr.

8. Client c1 talks to the chatroom it is still connected to, sending the string “Anyone listening ?”.
The chatroom reacts appropriately.

COMP 304B Final 6



COMP 304B Final 7

(9) [2]

Draw a Deployment Diagram for an AccountingComponentwith interfaces UserServices and ManagerServices
implemented on a LinuxServer, a UserApps component accessing AccountingComponent’s UserServices,

COMP 304B Final 7



COMP 304B Final 8

running an a PCWindows2000 machine. Communication takes place over a 100Mbps TCP/IP LAN.

(10) [5]

1. Briefly describe the Statechart formalism. In particular, what do Statecharts add to State Automata ?
Hint: there are three core features added to State Automata.

COMP 304B Final 8



COMP 304B Final 9

Draw a simple example for each of the “features”.

COMP 304B Final 9



COMP 304B Final 10

(11) [2]
� In good OO design, what is the relationship between the state-space of a class C and the state-space of a

subclass S of C ?

� Illustrate by means of an example.

(12) [3]

Explain covariance and contravariance by means of an example.

COMP 304B Final 10



COMP 304B Final 11

(13) [4]

1. Explain encumbrance in your own words.

2. Give the indirect class-reference set of DrawableRectangle in the design given below.

Rectangle
+corner: Coordinate
+width: Real
+height: Real

DrawableRectangle
+getSurface(): Real
+draw(:Colour)

Coordinate
+x: Real
+y: Real

Colour
+value: enum {RED, GREEN, BLACK}

3. Give the indirect encumbrance for DrawableRectangle.

4. What does a class in a high domain (the application domain for example) but with a low indirect encum-
brance indicate ?

COMP 304B Final 11



COMP 304B Final 12

(14) [4]

Describe the Command Pattern by means of a Class Diagram and a Sequence Diagram. Explain how to support
Undo and Redo when using the Command Pattern.

COMP 304B Final 12


