UML

Behaviour Diagrams

' Behaviour Diagrams

B Structure Diagrams are used to describe the static
composition of components (i.e., constraints on what
iIntstances may exist at run-time).

B |nteraction Diagrams are used to describe the
communication between the various components.

B Deployment Diagrams are used to describe the mapping
between software artifacts and deployment targets.

B Behaviour Diagrams are used to describe the behaviour

« Of the whole application

« Of a particular process in an application
« Of a specific object in an application

' Different Formalisms ...

® \We will look at different formalisms/languages for
describing behaviour:

+ Finite State Automata
« Activity Diagrams
+ Statecharts

' Finite State Automaton

B A finite automaton consists of
+ Set of states
+ Input alphabet (of input “events”)
« Rules for changing state
- Start State (exactly 1)
« Accept State(s) (when used for language recognition)

Formal definition, from Sipser's Theory of Computation

y

Example : Automatic Door

T

' Specification

The automatic door can be opened or closed.

B The sensor at the top of the door can send 4 types of
signals:

+ Nobody : There is nobody in front nor behind the doors.

« Front: There is somebody in front of the doors.

+ Behind: There is somebody behind the doors.

« Both: There is somebody in front nor behind the doors.

B The door behaves as follows:

« The door opens when somebody is in front of the doors.

« The door closes only when nothing is in front or behind the
doors.

B The door starts off closed.

y

' Formal Specification

The automatic door can be opened or closed. (state)
B The sensor at the top of the door can send 4 types of
signals: (input alphabet)

« Nobody : There is nobody in front nor behind the doors.

« Front: There is somebody in front of the doors.

« Behind: There is somebody behind the doors.

« Both: There is somebody in front and behind the doors.

B The door behaves as follows: (transition)

« The door opens when somebody is in front of the doors.

« The door closes only when nothing is in front or behind the
doors.

B The door starts off as closed. (start state)

y

' Diagrams

Nathing

Frgnt, Belind,
Eehimj,Enjth[Open) [E"jﬁe'jj N athing

T Frant, Both T

Class Diagram of FSA

FSA

+addstate()
+addTransiticoni)
+drawi()

[N
exactly 1 INIT state

State statas

1 %*

unldus nams Ihl+n-a_me: String

+tyvpe: enum{INIT, REZ, TERM}
+drawl()

?Es_rg%t (}

transiticns=1{}

for TEEM state: ‘j

[zet]

Deterministic FA
ocutgoing transitions
Q] have |= inputEvents
*

Transition transitions

+inputEvent: Event
+outputEvent: Event

+draw()

Describing Reactive System Behaviour:
Output and Guards

B \Ve can extend this by adding the notions of output and
guards.

+ Both of these additions can be found on the transition arrow.

® \When a transition is triggered, it can broadcast an output
event (or perform an action).

B Conditions can be imposed on transitions by adding
guards.

+ A transition can then only take place if the guard evaluates to

true.

Example

Mothing / closeDoor()

Frgn, Benind,
Behing, Both (Cpen j (Closed j Nothing
| T

Front, Both [time = & and < 21] / openDoaor()

Note: total state (modal ++) l

Executing/Simulating an DFA

initialize the state
currentState = getInitState ()

as long as there is input
while environment.inputRemaining() :

get input event from the environment
currentEvent = environment.getInput ()

find applicable transition from currentState
currentTransition = None
for transition in currentState.transitions:
if transition.inputEvent == currentEvent:
currentTransition = transition
break # assumes determinism!
if currentTransition == None:
print "unrecognized event, rejecting input"
sys.exit () # or ignore: pass

generate output event
environment .putOutput (transition.outputEvent) # could be action

update the current state

currentState = transition.target
if currentState.type == TERM:
print "input accepted"
else:

print "input rejected"

'Non Deterministic vs. Deterministic

B A non-deterministic FSA (NFA) is a finite state
automaton where there exists a least one state from

which multiple transitions can be triggered by the same
event.

B NFAs can always be transformed into a DFAs.

y

' Regular Expressions

B Regular expressions can be “compiled into” finite state
automata

y

' What is a Regular Expression?

B A (text) pattern that describes (matches) a set of strings,
according to certain syntax rules.

B As such, a Regular Expression specifies a language

B Examples of regular expressions include:
« Text starting with the letter “a” and finishing with the letter “z".

13 n

« Text with at least one number, but not starting with the letter “a
Or “b”.

« Text with a letter repeated three times in a row.

« Text contains the string “abc” exactly three times.

y

' RegEx Constructs

® Most Regular Expression Language offer the following
constructs.

« Sequence: abc (really shorthand for the sequence 'a' 'b' 'c')
+ Alternatives: john|bob
« Grouping: b(ola)b
+ Quantification:

> ?:00r1:(514)?555-5555

> *:0 or more : abc”*

> +:1 ormore : abc+
« Escape character to allow use of meta-characters: \?, *, ...
+ Substitution:

> P =a%b+

> Q= {P}xyz{P} ‘

From RegEx to FSA

ab((cd)|(de))

' Solution

?
e e e

C d

i

(state 4 j state 5

state 6 state 7

y

RegExp

a+b(c|df*)(eh|gi)

' Corresponding FSA

d

0]
Com)—Come J=sCome

|
() o)

h i

y

Real-world Examples

http://msdl.cs.mcgill.ca/people/hv/teaching/SoftwareDesign/
COMP304B2003/assignments/assignment3/solution/

http://msdl.cs.mcgill.ca/people/hv/teaching/SoftwareDesign/

The Big Picture: testing
interactions

| @ Regular Expressions;
L 1
F I i |:\I> B[] CL () RS (bt
B C I | : #(CR 20 RR U
| |
1 |

"] ©

GEMERATE CODE @

class A:

def _init_iselly

Glass D
def __init_ [self)y:

class E;
def __init_ jselfy:

class My Scanneri Scanner):

it chat oo | def init_ (self, stream):

b |) Receine

VERIFY / @

&

OK?

From Requirement

REQUIREMENT

®

7 N

@ Regular Expressions;

T) [g Rs pan
| p[M CR 20 RR

|

|

class A

del it (=ell):

Cliss D
det init_ (self):

class E:

def it [self):

®

class MyScanner] Scanner);
ot (Client 11 A ennnsction TEUER 18 BEMT 1T hat oo 1.

LS | def imit_(self, stream):

Al et [} Recaved ooeseetion rajuest Tioen el 7

(CRLIRR2

\J/'“—g
\

VERIFY

L

OK?

To automated Testing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

