UML

Behaviour Diagrams




' Behaviour Diagrams

B Structure Diagrams are used to describe the static
composition of components (i.e., constraints on what
iIntstances may exist at run-time).

B |nteraction Diagrams are used to describe the
communication between the various components.

B Deployment Diagrams are used to describe the mapping
between software artifacts and deployment targets.

B Behaviour Diagrams are used to describe the behaviour

« Of the whole application

« Of a particular process in an application
« Of a specific object in an application



' Different Formalisms ...

® \We will look at different formalisms/languages for
describing behaviour:

+ Finite State Automata
« Activity Diagrams
+ Statecharts




' Finite State Automaton

B A finite automaton consists of
+ Set of states
+ Input alphabet (of input “events”)
« Rules for changing state
- Start State (exactly 1)
« Accept State(s) (when used for language recognition)

Formal definition, from Sipser's Theory of Computation
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Example : Automatic Door
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' Specification

The automatic door can be opened or closed.

B The sensor at the top of the door can send 4 types of
signals:

+ Nobody : There is nobody in front nor behind the doors.

« Front: There is somebody in front of the doors.

+ Behind: There is somebody behind the doors.

« Both: There is somebody in front nor behind the doors.

B The door behaves as follows:

« The door opens when somebody is in front of the doors.

«  The door closes only when nothing is in front or behind the
doors.

B The door starts off closed.
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' Formal Specification

The automatic door can be opened or closed. (state)
B The sensor at the top of the door can send 4 types of
signals: (input alphabet)

« Nobody : There is nobody in front nor behind the doors.

« Front: There is somebody in front of the doors.

« Behind: There is somebody behind the doors.

« Both: There is somebody in front and behind the doors.

B The door behaves as follows: (transition)

« The door opens when somebody is in front of the doors.

« The door closes only when nothing is in front or behind the
doors.

B The door starts off as closed. (start state)
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' Diagrams
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Class Diagram of FSA
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Describing Reactive System Behaviour:
Output and Guards

B \Ve can extend this by adding the notions of output and
guards.

+ Both of these additions can be found on the transition arrow.

® \When a transition is triggered, it can broadcast an output
event (or perform an action).

B Conditions can be imposed on transitions by adding
guards.

+ A transition can then only take place if the guard evaluates to

true.



Example
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Executing/Simulating an DFA

# initialize the state
currentState = getInitState ()

# as long as there is input
while environment.inputRemaining() :

# get input event from the environment
currentEvent = environment.getInput ()

# find applicable transition from currentState
currentTransition = None
for transition in currentState.transitions:
if transition.inputEvent == currentEvent:
currentTransition = transition
break # assumes determinism!
if currentTransition == None:
print "unrecognized event, rejecting input"
sys.exit () # or ignore: pass

# generate output event
environment .putOutput (transition.outputEvent) # could be action

# update the current state

currentState = transition.target
if currentState.type == TERM:
print "input accepted"
else:

print "input rejected"




'Non Deterministic vs. Deterministic

B A non-deterministic FSA (NFA) is a finite state
automaton where there exists a least one state from

which multiple transitions can be triggered by the same
event.

B NFAs can always be transformed into a DFAs.
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' Regular Expressions

B Regular expressions can be “compiled into” finite state
automata
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' What is a Regular Expression?

B A (text) pattern that describes (matches) a set of strings,
according to certain syntax rules.

B As such, a Regular Expression specifies a language

B Examples of regular expressions include:
« Text starting with the letter “a” and finishing with the letter “z".

13 n

« Text with at least one number, but not starting with the letter “a
Or “b”.

«  Text with a letter repeated three times in a row.

« Text contains the string “abc” exactly three times.
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' RegEx Constructs

® Most Regular Expression Language offer the following
constructs.

« Sequence: abc (really shorthand for the sequence 'a' 'b' 'c')
+ Alternatives: john|bob
« Grouping: b(ola)b
+ Quantification:

> ?:00r1:(514)?555-5555

> *:0 or more : abc”*

> +:1 ormore : abc+
« Escape character to allow use of meta-characters: \?, \*, ...
+ Substitution:

> P =a%b+

> Q= {P}xyz{P} ‘



From RegEx to FSA

ab((cd)|(de))




' Solution
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RegExp

a+b(c|df*)(eh|gi)




' Corresponding FSA
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Real-world Examples

http://msdl.cs.mcgill.ca/people/hv/teaching/SoftwareDesign/
COMP304B2003/assignments/assignment3/solution/



http://msdl.cs.mcgill.ca/people/hv/teaching/SoftwareDesign/

The Big Picture: testing
interactions
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From Requirement
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class A

del it (=ell):
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To automated Testing
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