
UML

Behaviour Diagrams

Behaviour Diagrams

■ Structure Diagrams are used to describe the static
composition of components (i.e., constraints on what
intstances may exist at run-time).

■ Interaction Diagrams are used to describe the
communication between the various components.

■ Deployment Diagrams are used to describe the mapping
between software artifacts and deployment targets.

■ Behaviour Diagrams are used to describe the behaviour
 Of the whole application
 Of a particular process in an application
 Of a specific object in an application

Different Formalisms ...

■ We will look at different formalisms/languages for
describing behaviour:
 Finite State Automata
 Activity Diagrams
 Statecharts

Finite State Automaton

■ A finite automaton consists of
 Set of states
 Input alphabet (of input “events”)
 Rules for changing state
 Start State (exactly 1)
 Accept State(s) (when used for language recognition)

Formal definition, from Sipser's Theory of Computation

Example : Automatic Door

Automatic Sliding Door

Specification

■ The automatic door can be opened or closed.
■ The sensor at the top of the door can send 4 types of

signals:
 Nobody : There is nobody in front nor behind the doors.
 Front: There is somebody in front of the doors.
 Behind: There is somebody behind the doors.
 Both: There is somebody in front nor behind the doors.

■ The door behaves as follows:
 The door opens when somebody is in front of the doors.
 The door closes only when nothing is in front or behind the

doors.

■ The door starts off closed.

Formal Specification

■ The automatic door can be opened or closed. (state)
■ The sensor at the top of the door can send 4 types of

signals: (input alphabet)
 Nobody : There is nobody in front nor behind the doors.
 Front: There is somebody in front of the doors.
 Behind: There is somebody behind the doors.
 Both: There is somebody in front and behind the doors.

■ The door behaves as follows: (transition)
 The door opens when somebody is in front of the doors.
 The door closes only when nothing is in front or behind the

doors.

■ The door starts off as closed. (start state)

Diagrams

Class Diagram of FSA

Describing Reactive System Behaviour:
Output and Guards

■ We can extend this by adding the notions of output and
guards.
 Both of these additions can be found on the transition arrow.

■ When a transition is triggered, it can broadcast an output
event (or perform an action).

■ Conditions can be imposed on transitions by adding
guards.
 A transition can then only take place if the guard evaluates to

true.

Example

Note: total state (modal ++)

Executing/Simulating an DFA
initialize the state
 currentState = getInitState()

 # as long as there is input
 while environment.inputRemaining():

 # get input event from the environment
 currentEvent = environment.getInput()

 # find applicable transition from currentState
 currentTransition = None
 for transition in currentState.transitions:
 if transition.inputEvent == currentEvent:
 currentTransition = transition
 break # assumes determinism!
 if currentTransition == None:
 print "unrecognized event, rejecting input"
 sys.exit() # or ignore: pass

 # generate output event
 environment.putOutput(transition.outputEvent) # could be action

 # update the current state
 currentState = transition.target

 if currentState.type == TERM:
 print "input accepted"
 else:
 print "input rejected"

Non Deterministic vs. Deterministic

■ A non-deterministic FSA (NFA) is a finite state
automaton where there exists a least one state from
which multiple transitions can be triggered by the same
event.

■ NFAs can always be transformed into a DFAs.

Regular Expressions

■ Regular expressions can be “compiled into” finite state
automata

What is a Regular Expression?

■ A (text) pattern that describes (matches) a set of strings,
according to certain syntax rules.

■ As such, a Regular Expression specifies a language
■ Examples of regular expressions include:

 Text starting with the letter “a” and finishing with the letter “z”.
 Text with at least one number, but not starting with the letter “a”

or “b”.
 Text with a letter repeated three times in a row.
 Text contains the string “abc” exactly three times.

RegEx Constructs

■ Most Regular Expression Language offer the following
constructs.
 Sequence: abc (really shorthand for the sequence 'a' 'b' 'c')
 Alternatives: john|bob
 Grouping: b(o|a)b
 Quantification:

➔ ? : 0 or 1 : (514)?555-5555
➔ * : 0 or more : abc*
➔ + : 1 or more : abc+

 Escape character to allow use of meta-characters: \?, *, ...
 Substitution:

➔ P = a*b+
➔ Q = {P}xyz{P}

From RegEx to FSA

ab((cd)|(de))

Solution

RegExp

a+b(c|df*)(eh|gi)

Corresponding FSA

1 2 3

4 5

6 7

8

Real-world Examples

http://msdl.cs.mcgill.ca/people/hv/teaching/SoftwareDesign/
COMP304B2003/assignments/assignment3/solution/

http://msdl.cs.mcgill.ca/people/hv/teaching/SoftwareDesign/

The Big Picture: testing
interactions

From Requirement

To automated Testing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

