UML

Behaviour Diagrams

Behaviour Diagrams

- Structure Diagrams are used to describe the static composition of components (i.e., constraints on what intstances may exist at run-time).
- Interaction Diagrams are used to describe the communication between the various components.
- Deployment Diagrams are used to describe the mapping between software artifacts and deployment targets.
- Behaviour Diagrams are used to describe the behaviour
 - Of the whole application
 - Of a particular process in an application
 - Of a specific object in an application

Different Formalisms

- We will look at different formalisms/languages for describing behaviour:
 - Finite State Automata
 - Activity Diagrams
 - Statecharts

Finite State Automaton

- A finite automaton consists of
 - Set of states
 - Input alphabet (of input "events")
 - Rules for changing state
 - Start State (exactly 1)
 - Accept State(s) (when used for language recognition)

Formal definition, from Sipser's Theory of Computation

Example: Automatic Door

Automatic Sliding Door

Specification

- The automatic door can be opened or closed.
- The sensor at the top of the door can send 4 types of signals:
 - Nobody: There is nobody in front nor behind the doors.
 - Front: There is somebody in front of the doors.
 - Behind: There is somebody behind the doors.
 - Both: There is somebody in front nor behind the doors.
- The door behaves as follows:
 - The door opens when somebody is in front of the doors.
 - The door closes only when nothing is in front or behind the doors.
- The door starts off closed.

Formal Specification

- The automatic door can be opened or closed. (state)
- The sensor at the top of the door can send 4 types of signals: (input alphabet)
 - Nobody: There is nobody in front nor behind the doors.
 - Front: There is somebody in front of the doors.
 - Behind: There is somebody behind the doors.
 - Both: There is somebody in front and behind the doors.
- The door behaves as follows: (transition)
 - The door opens when somebody is in front of the doors.
 - The door closes only when nothing is in front or behind the doors.
- The door starts off as closed. (start state)

Diagrams

Class Diagram of FSA

Describing Reactive System Behaviour: Output and Guards

- We can extend this by adding the notions of output and guards.
 - Both of these additions can be found on the transition arrow.
- When a transition is triggered, it can broadcast an output event (or perform an action).
- Conditions can be imposed on transitions by adding guards.
 - A transition can then only take place if the guard evaluates to true.

Example

Note: total state (modal ++)

Executing/Simulating an DFA

```
# initialize the state
currentState = getInitState()
# as long as there is input
while environment.inputRemaining():
  # get input event from the environment
  currentEvent = environment.getInput()
   # find applicable transition from currentState
  currentTransition = None
  for transition in currentState.transitions:
     if transition.inputEvent == currentEvent:
       currentTransition = transition
      break # assumes determinism!
  if currentTransition == None:
    print "unrecognized event, rejecting input"
     sys.exit() # or ignore: pass
  # generate output event
  environment.putOutput(transition.outputEvent) # could be action
  # update the current state
  currentState = transition.target
if currentState.type == TERM:
 print "input accepted"
else:
 print "input rejected"
```

Non Deterministic vs. Deterministic

A non-deterministic FSA (NFA) is a finite state automaton where there exists a least one state from which multiple transitions can be triggered by the same event.

NFAs can always be transformed into a DFAs.

Regular Expressions

 Regular expressions can be "compiled into" finite state automata

What is a Regular Expression?

- A (text) pattern that describes (matches) a set of strings, according to certain syntax rules.
- As such, a Regular Expression specifies a language
- Examples of regular expressions include:
 - Text starting with the letter "a" and finishing with the letter "z".
 - Text with at least one number, but not starting with the letter "a" or "b".
 - Text with a letter repeated three times in a row.
 - Text contains the string "abc" exactly three times.

RegEx Constructs

- Most Regular Expression Language offer the following constructs.
 - Sequence: abc (really shorthand for the sequence 'a' 'b' 'c')
 - Alternatives: john bob
 - Grouping: b(o|a)b
 - Quantification:
 - → ?: 0 or 1: (514)?555-5555
 - * : 0 or more : abc*
 - → +: 1 or more : abc+
 - Escape character to allow use of meta-characters: \?, *, ...
 - Substitution:
 - \rightarrow P = a*b+
 - \rightarrow Q = {P}xyz{P}

From RegEx to FSA

ab((cd)|(de))

Solution

RegExp

Corresponding FSA

Real-world Examples

http://msdl.cs.mcgill.ca/people/hv/teaching/SoftwareDesign/COMP304B2003/assignments/assignment3/solution/

The Big Picture: testing interactions

From Requirement

To automated Testing